Solution 6

1. (a)
$$\partial I(x) = \{0\}$$
 for $x \in X$ and $\partial I(x) =$ for $x \notin X$.
(b) $\partial f(x) = \{0\}$ for $x = 0$ and $\partial f(x) = \left\{\frac{x}{|x|_2}\right\}$ for $x \neq 0$.

2. Suppose $0 \notin \partial f(x_0)$. Then $f(x) < f(x_0)$ for some $x \in X$. By convexity and differentiability, $f(x) \ge f(x_0) + \langle \nabla f(x_0), x - x_0 \rangle$, $s_0 \langle \nabla f(x_0), x - x_0 \rangle \le f(x) - f(x_0) < 0$. Conversely, suppose $0 \in \partial f(x_0)$. Let $x \in X$. Define $g(t) = f((1-t)x_0 + tx)$ for $t \in [0,1]$. Since $0 \in \partial f(x_0)$, we have $f(x) \ge f(x_0)$ for all $x \in X$, so $g(t) \ge g(0)$ for all $t \in [0,1]$. This implies $g'(0) \ge 0$, $s_0 \langle \nabla f(x_0), x - x_0 \rangle = g'(0) \ge 0$.

3. (a) Since f is a continuous function on a compact domain, f attains a minimum point at some x^* .

(b) By the chain rule, $f'(x) = \sum_{i=1}^{k} L'(x^T u_i) u_i + 2x$, so $0 = \sum_{i=1}^{k} x_i u_i + 2x$, for some $w_i \in \mathbb{R}$, so $x \in \text{span} \{w_1, \ldots, u_k\}$.