Solution 5

1.

(a) Let x_{0} be a minimizer of f. Then we have $f(x)-f\left(x_{0}\right) \geq 0=0^{\top}\left(x-x_{0}\right)$, so $0 \in \partial f\left(x_{0}\right)$.

Conversely, if $0 \in \partial f\left(x_{0}\right)$, then we have $f(x)-f\left(x_{0}\right) \geq 0^{\top}\left(x-x_{0}\right)=0$ for all x, so x_{0} is a global minimizer of f.
(b) Let $0 \in \partial f\left(x_{0}\right)$. Since f is convex and differentiable at x_{0}, we have $\partial f\left(x_{0}\right)=\left\{\nabla f\left(x_{0}\right)\right\}$, so $\nabla f\left(x_{0}\right)=0$, and hence $\left\langle\nabla f\left(x_{0}\right), x-x_{0}\right\rangle \geq 0$ for all $x \in \mathbb{R}^{n}$.

Conversely, suppose $\left\langle\nabla f\left(x_{0}\right), x-x_{0}\right\rangle \geq 0$ for all $x \in \mathbb{R}^{n}$. Since f is convex and differentiable at x_{0}, we have $f(x)-f\left(x_{0}\right) \geq\left\langle\nabla f\left(x_{0}\right), x-x_{0}\right\rangle \geq 0$ for all $x \in \mathbb{R}^{n}$, so x_{0} is a global minimizer, and hence $0 \in \partial f\left(x_{0}\right)$.
2. Please refer to Proposition 2.6 in Note 1.
3. Please refer to Remark 2.1 (following Theorem 2.4) in Note 1.

