Solution 3

1.

(a) For any $t \in[0,1], x, y \in \mathbb{R}^{N}$

$$
f(A(t x+(1-t) y))=f(t A x+(1-t) A y) \leq t f(A x)+(1-t) f(A y)
$$

Thus, g is convex.
(b) The claim follows immediately from the fact that that $\operatorname{epi}\left(\sup _{\lambda} f_{\lambda}\right)=$ $\cap_{\lambda} \operatorname{epi}\left(f_{\lambda}\right)$.
2.
(a) A convex but not strictly convex function is $f(x)=x$. A strictly convex but not strongly convex function is $f(x)=x^{3 / 2}, x \in \mathbb{R}^{+}$.
(b) Counter example: $f(x)=-x$ and $g(x)=x^{2}$ are both convex but $f \circ g=$ $-x^{2}$ is not.
3.
(a) First consider the case $\alpha=1$, which easily gives convexity. Then consider the case $\alpha>1$, where $f(x)=|x|^{\alpha}$ is differentiable. Then $f^{\prime \prime}(x)=\alpha(\alpha-$ 1) $x^{\alpha-2} \geq 0$ for $x \geq 0$ and $f^{\prime \prime}(x)=\alpha(\alpha-1)(-x)^{\alpha-1} \geq 0$ for $x \leq 0$. Thus, f is convex.
(b) Note that the Hessian matrix is $\operatorname{diag}\left\{1 /\left(1+x_{1}\right)^{2}, 1 /\left(1+x_{2}\right)^{2}, \ldots, 1 /\left(1+x_{N}\right)^{2}\right\}$, which is positive definite.
(c) Let P be semi-positive definite. Let $t \in[0,1]$ and $x, y \in \mathbb{R}^{N}$. We have

$$
\begin{aligned}
& (t x+(1-t) y)^{\top} P(t x+(1-t) y)-t x^{\top} P x-(1-t) y^{\top} P y \\
= & -t(1-t) x^{\top} P x-t(1-t) y^{\top} P y+t(1-t) x^{\top} P y+t(1-t) y^{\top} P x \\
= & -t(1-t)\left(x^{\top} P x+y^{\top} P y-x^{\top} P y-y^{\top} P x\right) \\
= & -t(1-t)(x-y)^{\top} P(x-y)
\end{aligned}
$$

<0.
Thus, $x^{\top} P x$ is convex.

