Solution 3

1.

(a) For any $t \in [0, 1], x, y \in \mathbb{R}^N$

$$f(A(tx + (1 - t)y)) = f(tAx + (1 - t)Ay) \le tf(Ax) + (1 - t)f(Ay)$$

Thus, g is convex.

(b) The claim follows immediately from the fact that that $epi(sup_{\lambda} f_{\lambda}) =$ $\cap_{\lambda} \operatorname{epi}(f_{\lambda}).$

2.

(a) A convex but not strictly convex function is f(x) = x. A strictly convex but not strongly convex function is $f(x) = x^{3/2}$, $x \in \mathbb{R}^+$. (b) Counter example: f(x) = -x and $g(x) = x^2$ are both convex but $f \circ g = x^2$

 $-x^2$ is not.

3.

(a) First consider the case $\alpha = 1$, which easily gives convexity. Then consider the case $\alpha > 1$, where $f(x) = |x|^{\alpha}$ is differentiable. Then $f''(x) = \alpha(\alpha - 1)x^{\alpha-2} \ge 0$ for $x \ge 0$ and $f''(x) = \alpha(\alpha - 1)(-x)^{\alpha-1} \ge 0$ for $x \le 0$. Thus, f is convex.

(b) Note that the Hessian matrix is diag $\{1/(1+x_1)^2, 1/(1+x_2)^2, \dots, 1/(1+x_N)^2\},\$ which is positive definite.

(c) Let P be semi-positive definite. Let $t \in [0, 1]$ and $x, y \in \mathbb{R}^N$. We have

$$(tx + (1 - t)y)^{\top} P(tx + (1 - t)y) - tx^{\top} Px - (1 - t)y^{\top} Py = -t(1 - t)x^{\top} Px - t(1 - t)y^{\top} Py + t(1 - t)x^{\top} Py + t(1 - t)y^{\top} Px = -t(1 - t) (x^{\top} Px + y^{\top} Py - x^{\top} Py - y^{\top} Px) = -t(1 - t)(x - y)^{\top} P(x - y) < 0.$$

Thus, $x^{\top} Px$ is convex.