Homework 2

1. (a) $\operatorname{int}(A) = \emptyset$, $\operatorname{ri}(A) = \{(x, y, 0) \in \mathbb{R}^3 : x^2 + y^2 < 1\}$; $\operatorname{int}(B) = \operatorname{ri}(B) = B$

(b) It is true that $T \subseteq S$ implies $\operatorname{int}(T) \subseteq \operatorname{int}(S)$. For any $x \in \operatorname{int}(T)$, there exists an open set $U \subseteq T$ containing x. Then $x \in U \subseteq T \subseteq S$, which implies $x \in \operatorname{int}(S)$.

It is NOT true that $T \subseteq S$ implies $\operatorname{ri}(T) \subseteq \operatorname{ri}(S)$. For example, let $T = \{(x,0) \in \mathbb{R}^2, 0 \le x \le 1\}$ and $S = \{(x,y) \in \mathbb{R}^2, 0 \le x, y \le 1\}$ in \mathbb{R} . We have $\operatorname{ri}(T) = \{(x,0) \in \mathbb{R}^2, 0 < x < 1\}$ and $\operatorname{ri}(S) = S = \{(x,y) \in \mathbb{R}^2, 0 < x, y < 1\}$.

2. (a) $f_1 + f_2$ is convex. For any $x, y \in \mathbb{R}^N$, $t \in [0, 1]$. We have

$$t (f_1 + f_2) (x) + (1 - t) (f_1 + f_2) (y)$$

= $tf_1(x) + (1 - t)f_1(y) + tf_2(x) + (1 - t)f_2(y)$
 $\geq f_1(tx + (1 - t)y) + f_2(tx + (1 - t)y)$
= $(f_1 + f_2) (tx + (1 - t)y).$

(b) $f_1 \cdot f_2$ may not be convex. For example, $f_2(x) = -1$, $f_1(x) = x^2$.

(c) f_1-f_2 may not be convex. The counter example in (b) is also a counter example for this.

(d) max (f_1, f_2) is convex. For any $x, y \in \mathbb{R}^N, t \in [0, 1]$. For i = 1, 2, we have

$$f_i(tx + (1-t)y) \le tf_i(x) + (1-t)f_i(y) \le t \max(f_1, f_2)(x) + (1-t)\max(f_1, f_2)(y).$$

3. Suppose f is convex. For any $(x_1, t_1), (x_2, t_2) \in epi(f)$ and $\theta \in [0, 1]$, we have

$$y := \theta (x_1, t_1) + (1 - \theta) (x_2, t_2) = (\theta x_1 + (1 - \theta) x_2, \theta t_1 + (1 - \theta) t_2)$$

Since f is convex, we have

$$f(\theta x_1 + (1 - \theta)x_2) \le \theta f(x_1) + (1 - \theta)f(x_2)$$
$$\le \theta t_1 + (1 - \theta)t_2,$$

which implies $p \in epi(f)$ and epi(f) is convex.

On the other hand, suppose epi(f) is convex. Let $x_1, x_2 \in \mathbb{R}^N, \theta \in [0, 1]$. Note that $(x_1, f(x_1)), (x_2, f(x_2)) \in epi(f)$. Since epi(f) is convex, we have

$$(\theta x_1 + (1 - \theta) x_2, \theta f(x_1) + (1 - \theta) f(x_2)) = \theta (x_1, f(x_1)) + (1 - \theta) (x_2, f(x_2)) \in \operatorname{epi}(f)$$

Then $f(\theta x_1 + (1 - \theta)x_2) \le \theta f(x_1) + (1 - \theta)f(x_2)$, which implies that f is convex.

For question 2(d), take any $(x,t) \in \mathbb{R}^{N+1}$,

$$(x,t) \in \operatorname{epi}(f_1) \cap \operatorname{epi}(f_2)$$
$$\iff f_1(x) \le t \text{ and } f_2(x) \le t$$
$$\iff \max(f_1, f_2)(x) \le t$$
$$\iff (x,t) \in \operatorname{epi}(\max(f_1, f_2))$$

Thus, $\operatorname{epi}(\max(f_1, f_2)) = \operatorname{epi}(f_1) \cap \operatorname{epi}(f_2)$. Since $\operatorname{epi}(f_i)$, i = 1, 2 is convex, $\operatorname{epi}(\max(f_1, f_2))$ is also convex. Thus, $\max(f_1, f_2)$ is convex.