Homework 2

1. (a) $\operatorname{int}(A)=\varnothing, \operatorname{ri}(A)=\left\{(x, y, 0) \in \mathbb{R}^{3}: x^{2}+y^{2}<1\right\}$;
$\operatorname{int}(B)=\operatorname{ri}(B)=B$
(b) It is true that $T \subseteq S \operatorname{implies} \operatorname{int}(T) \subseteq \operatorname{int}(S)$. For any $x \in \operatorname{int}(T)$, there exists an open set $U \subseteq T$ containing x. Then $x \in U \subseteq T \subseteq S$, which implies $x \in \operatorname{int}(S)$.

It is NOT true that $T \subseteq S$ implies $\operatorname{ri}(T) \subseteq \operatorname{ri}(S)$. For example, let $T=$ $\left\{(x, 0) \in \mathbb{R}^{2}, 0 \leq x \leq 1\right\}$ and $\left.S=\left\{(x, y) \in \mathbb{R}^{2}, 0 \leq x, y \leq 1\right)\right\}$ in \mathbb{R}. We have $\operatorname{ri}(T)=\left\{(x, 0) \in \mathbb{R}^{2}, 0<x<1\right\}$ and $\left.\operatorname{ri}(S)=S=\left\{(x, y) \in \mathbb{R}^{2}, 0<x, y<1\right)\right\}$.
2. (a) $f_{1}+f_{2}$ is convex. For any $x, y \in \mathbb{R}^{N}, t \in[0,1]$. We have

$$
\begin{aligned}
& t\left(f_{1}+f_{2}\right)(x)+(1-t)\left(f_{1}+f_{2}\right)(y) \\
= & t f_{1}(x)+(1-t) f_{1}(y)+t f_{2}(x)+(1-t) f_{2}(y) \\
\geq & f_{1}(t x+(1-t) y)+f_{2}(t x+(1-t) y) \\
= & \left(f_{1}+f_{2}\right)(t x+(1-t) y) .
\end{aligned}
$$

(b) $f_{1} \cdot f_{2}$ may not be convex. For example, $f_{2}(x)=-1, f_{1}(x)=x^{2}$.
(c) $f_{1}-f_{2}$ may not be convex. The counter example in (b) is also a counter example for this.
(d) $\max \left(f_{1}, f_{2}\right)$ is convex. For any $x, y \in \mathbb{R}^{N}, t \in[0,1]$. For $i=1,2$, we have

$$
\begin{aligned}
f_{i}(t x+(1-t) y) & \leq t f_{i}(x)+(1-t) f_{i}(y) \\
& \leq t \max \left(f_{1}, f_{2}\right)(x)+(1-t) \max \left(f_{1}, f_{2}\right)(y) .
\end{aligned}
$$

3. Suppose f is convex. For any $\left(x_{1}, t_{1}\right),\left(x_{2}, t_{2}\right) \in \operatorname{epi}(f)$ and $\theta \in[0,1]$, we have

$$
y:=\theta\left(x_{1}, t_{1}\right)+(1-\theta)\left(x_{2}, t_{2}\right)=\left(\theta x_{1}+(1-\theta) x_{2}, \theta t_{1}+(1-\theta) t_{2}\right)
$$

Since f is convex, we have

$$
\begin{aligned}
f\left(\theta x_{1}+(1-\theta) x_{2}\right) & \leq \theta f\left(x_{1}\right)+(1-\theta) f\left(x_{2}\right) \\
& \leq \theta t_{1}+(1-\theta) t_{2}
\end{aligned}
$$

which implies $p \in \operatorname{epi}(f)$ and $\operatorname{epi}(f)$ is convex.
On the other hand, suppose epi (f) is convex. Let $x_{1}, x_{2} \in \mathbb{R}^{N}, \theta \in[0,1]$. Note that $\left(x_{1}, f\left(x_{1}\right)\right),\left(x_{2}, f\left(x_{2}\right)\right) \in \operatorname{epi}(f)$. Since epi (f) is convex, we have

$$
\begin{aligned}
& \left(\theta x_{1}+(1-\theta) x_{2}, \theta f\left(x_{1}\right)+(1-\theta) f\left(x_{2}\right)\right) \\
= & \theta\left(x_{1}, f\left(x_{1}\right)\right)+(1-\theta)\left(x_{2}, f\left(x_{2}\right)\right) \in \operatorname{epi}(f)
\end{aligned}
$$

Then $f\left(\theta x_{1}+(1-\theta) x_{2}\right) \leq \theta f\left(x_{1}\right)+(1-\theta) f\left(x_{2}\right)$, which implies that f is convex.

For question $2(\mathrm{~d})$, take any $(x, t) \in \mathbb{R}^{N+1}$,

$$
\begin{aligned}
& (x, t) \in \operatorname{epi}\left(f_{1}\right) \cap \operatorname{epi}\left(f_{2}\right) \\
\Longleftrightarrow & f_{1}(x) \leq t \text { and } f_{2}(x) \leq t \\
\Longleftrightarrow & \max \left(f_{1}, f_{2}\right)(x) \leq t \\
\Longleftrightarrow & (x, t) \in \operatorname{epi}\left(\max \left(f_{1}, f_{2}\right)\right)
\end{aligned}
$$

Thus, epi $\left(\max \left(f_{1}, f_{2}\right)\right)=\operatorname{epi}\left(f_{1}\right) \cap \operatorname{epi}\left(f_{2}\right)$. Since epi $\left(f_{i}\right), i=1,2$ is convex, epi $\left(\max \left(f_{1}, f_{2}\right)\right)$ is also convex. Thus, $\max \left(f_{1}, f_{2}\right)$ is convex.

