Homework 1

1. Denote the three sets in (a) (b) and (c) as A,B and C respectively. Note that a set is convex (affine) if and only if its convex (affine) hull is itself.
(a) For any $x, y \in A$, let $x=x_{0}+\theta_{x} v$ and $y=x_{0}+\theta_{y} v$. Then,

$$
(1-\alpha) x+\alpha y=(1-\alpha)\left(x_{0}+\theta_{x} v\right)+\alpha\left(x_{0}+\theta_{y} v\right)=x_{0}+\left(1-\alpha \theta_{x}+\alpha \theta_{y}\right) v
$$

Since $1-\alpha \theta_{x}+\alpha \theta_{y} \geq 0$ if $0 \leq \alpha \leq 1, \mathrm{~A}$ is convex.
The affine hull of A is

$$
\left\{x \in \mathbb{R}^{N}: x=x_{0}+\theta v, \theta \in \mathbb{R}\right\} .
$$

Hence, A is not affine.
(b) $\forall x, y \in B$, since $\|x\|,\|y\| \leq 1$, we have

$$
\|(1-\alpha) x+\alpha y\| \leq|1-\alpha||x||+|\alpha| \| y||\leq|1-\alpha|+|\alpha| \leq 1
$$

Hence, B is convex.
The affine hull of B is

$$
\left\{\left(x_{1}, x_{2}, \ldots, x_{N-1}, 0\right): x_{1}, \ldots, x_{N-1} \in \mathbb{R}\right\}
$$

Hence, B is not affine.
(c) Pick any $x, y \in C$, we have

$$
A((1-\alpha) x+\alpha y)=(1-\alpha) A x+\alpha A y=(1-\alpha) b+\alpha b=b
$$

Hence, C is convex and affine.
2. Let $\left\{C_{\lambda}\right\}_{\lambda \in \Lambda}$ be convex sets and set $C=\bigcap_{\lambda \in \Lambda} C_{\lambda}$. For any $x, y \in C$. We have $x, y \in C_{\lambda}$ for any $\lambda \in \Lambda$. Since each C_{λ} is convex, we have $(1-\alpha) x+\alpha y \in$ C_{λ} for any $\lambda \in \Lambda$. Hence, $(1-\alpha) x+\alpha y \in C=\bigcap_{\lambda \in \Lambda} C_{\lambda}$.
3. (\Rightarrow) : Suppose the cone C is convex. Pick any $x=x_{1}+x_{2} \in C+C$ for some $x_{1}, x_{2} \in C$. We have $\frac{x_{1}+x_{2}}{2} \in C$. Since C is a cone, we have

$$
x=x_{1}+x_{2}=2 \cdot \frac{x_{1}+x_{2}}{2} \in C .
$$

(\Leftarrow) : Suppose $C+C \subset C$. Pick any $x, y \in C$. Let $\alpha \in[0,1]$. Since C is a cone, we have $\alpha x,(1-\alpha) y \in C$. Then $\alpha x+(1-\alpha) y \in C$ and C is convex.

