Assignment 9

1. Consider the convex problem
$\min f(x)$ subject to $g_{i}(x) \leq 0, i=1, \ldots, m$
Assume that $x^{*} \in \mathbb{R}^{n}, \lambda^{*} \in \mathbb{R}^{m}$ satisfy the KKT conditions

$$
\begin{aligned}
g_{i}\left(x^{*}\right) & \leq 0, i=1, \ldots m \\
\lambda_{i}^{*} & \geq 0, i=1, \ldots, m \\
\lambda_{i}^{*} g_{i}\left(x^{*}\right) & =0, i=1, \ldots, m \\
\nabla f\left(x^{*}\right)+\sum \lambda_{i}^{*} \nabla g_{i}\left(x^{*}\right) & =0
\end{aligned}
$$

Show that

$$
\left\langle\nabla f\left(x^{*}\right), x-x^{*}\right\rangle \geq 0
$$

for all feasible x.
2. Consider

$$
\begin{gathered}
\max _{(x, y, z) \in \mathbb{R}^{3}} 2 x+3 y+2 z \\
\text { subject to } x^{2}+y^{2}+z^{2}=1, x+y+z \geq 0
\end{gathered}
$$

(a) Show that an optimal solution exists.
(b) Write down the KKT conditions.
(c) Solve the KKT conditions.
3. Let A be an $n \times n$ real symmetric matrix. Consider

$$
\min _{\|x\|=1}\langle x, A x\rangle
$$

(a) Write down the KKT conditions.
(b) Assuming the KKT conditions are necessary and sufficient, show that the optimal value is an eigenvalue of A.

