Assignment 6

1. Give the subdifferential sets of the following functions:

(a)
$$I(x) = \begin{cases} 0, & x \in X, \\ \infty, & x \notin X, \end{cases}$$
 where $X \subseteq \mathbb{R}^N$ is a convex set.
(b) $f(x) = \|x\|_2, x \in \mathbb{R}^N$.

2. Let $f: X \to \mathbb{R}$ be convex and differentiable and X be a convex set. Then $0 \in \partial f(x_0)$ if and only if

$$\langle \nabla f(x_0), x - x_0 \rangle \ge 0, \forall x \in X.$$

3. Let $f(x) = \sum_{i=1}^{k} L(x^T u_i) + ||x||_2^2, x \in \Omega$, where $L : \mathbb{R} \to \mathbb{R}$ is convex, $\Omega \subseteq \mathbb{R}^N$ is compact and $u_i \in \mathbb{R}^N$. Show that

(a) $\min_{x \in \Omega} f$ can be achieved at some $x^* \in \Omega$;

(b) x^* is a linear combination of $\{u_1, \ldots, u_k\}$.