Assignment 6

1. Give the subdifferential sets of the following functions:
(a) $I(x)=\left\{\begin{array}{ll}0, & x \in X, \\ \infty, & x \notin X,\end{array}\right.$ where $X \subseteq \mathbb{R}^{N}$ is a convex set.
(b) $f(x)=\|x\|_{2}, x \in \mathbb{R}^{N}$.
2. Let $f: X \rightarrow \mathbb{R}$ be convex and differentiable and X be a convex set. Then $0 \in \partial f\left(x_{0}\right)$ if and only if

$$
\left\langle\nabla f\left(x_{0}\right), x-x_{0}\right\rangle \geq 0, \forall x \in X
$$

3. Let $f(x)=\sum_{i=1}^{k} L\left(x^{T} u_{i}\right)+\|x\|_{2}^{2}, x \in \Omega$, where $L: \mathbb{R} \rightarrow \mathbb{R}$ is convex, $\Omega \subseteq \mathbb{R}^{N}$ is compact and $u_{i} \in \mathbb{R}^{N}$. Show that
(a) $\min _{x \in \Omega} f$ can be achieved at some $x^{*} \in \Omega$;
(b) x^{*} is a linear combination of $\left\{u_{1}, \ldots, u_{k}\right\}$.
