Homework 4

1. Show the convexity of following functions:
(a) $f(x, y)=\frac{x^{2}}{y}, x \in \mathbb{R}, y>0$.
(b) $f(x, y)=\ln \left(e^{x}+e^{y}\right), x, y \in \mathbb{R}$.
2. Assume $f: \Omega \subset \mathbb{R}^{n} \rightarrow \mathbb{R}$ is twice differentiable. Determine which of the following implications are true. Briefly give your reason if the implication is true and give a counter example if not.
(a) $\nabla^{2} f(x) \succ 0, \forall x \in \Omega \Leftrightarrow f$ is strictly convex on Ω.
(b) A function f is strictly convex on $\Omega \subseteq \mathbb{R}^{n}$ if and only if

$$
f(y)>f(x)+\nabla f^{T}(x)(y-x), \forall x, y \in \Omega, x \neq y
$$

(c) f is strongly convex if and only if there exists $m>0$ such that

$$
f(y) \geq f(x)+\nabla^{T} f(x)(y-x)+m\|y-x\|^{2}, \forall x, y \in \operatorname{dom}(f)
$$

(d) f is strongly convex if and only if there exists $m>0$ such that

$$
\nabla^{2} f(x) \succeq m I, \forall x \in \operatorname{dom}(f)
$$

3. (a) Give the subdifferential of $f(x)=\max \left\{x^{2}+2 x-3, x^{2}-2 x-3,0\right\}$;
(b) Show that the subgradient of $f(x)=\sqrt{x}$ does not exist at $x=0$.
