Homework 1

1. Decide whether the following sets are convex and affine. Give the convex and affine hull if it is not convex or affine.
(a) A ray, which has the form $\left\{x \in \mathbb{R}^{N}: x=x_{0}+\theta v, \theta \geq 0\right\}$, where $x_{0} \in \mathbb{R}^{N}$ and $0 \neq v \in \mathbb{R}^{N}$ are fixed vectors.
(b) The N - 1-dimension Euclidean unit disk in \mathbb{R}^{N}, which has the form

$$
\left\{\left(x_{1}, x_{2}, \ldots, x_{N-1}, 0\right): \sqrt{x_{1}^{2}+x_{2}^{2}+\ldots x_{N-1}^{2}} \leq 1\right\}
$$

(c) The set of all solutions of the linear equation $A x=b$ for some matrix $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^{m}$, i.e.,

$$
\left\{x \in \mathbb{R}^{N}: A x=b\right\}
$$

where we assume the solution set is non-empty. (Hint: recall how to solve the non-homogeneous linear equations in linear algebra.)
2. Prove that the intersection of any number (perhaps infinite and uncountable) of convex sets is convex.
3. Prove that a cone C is convex if and only if $C+C \subset C$. (Hint: \Leftarrow take $x, y \in C$ and prove that $\theta x+(1-\theta) y \in C$ for $\theta \in[0,1] ; \Rightarrow$ take $x, y \in C$ and consider $\frac{x+y}{2}$).

