Mid-term Examination
 Partial Differential Equations (MATH4220)
 (Academic Year 2023/2024, Second Term)

Date: March 14th, 2024.
Time allowed: 8:30-10:15
Recall that, the solution u for 1D heat equation

$$
\left\{\begin{aligned}
\partial_{t} u=\partial_{x}^{2} u, & \text { in }(t, x) \in[0, \infty) \times \mathbb{R}_{x}, \\
u_{\mid t=0}=\phi(x), & \text { for } x \in \mathbb{R}_{x},
\end{aligned}\right.
$$

is given by

$$
u(t, x)=\int_{\mathbb{R}} S(t, x-y) \phi(y) \mathrm{d} y, \quad \text { where } S(t, x)=\frac{1}{\sqrt{4 \pi t}} e^{-\frac{x^{2}}{4 t}}
$$

For any $r>0$, we denote

$$
B_{r}=\left\{x \in \mathbb{R}^{3}:|x| \leq r\right\} \quad \text { and } \quad \partial B_{r}=\left\{x \in \mathbb{R}^{3}:|x|=r\right\} .
$$

1. Consider the following four questions.
(a) (5 points) State the definition of a linear PDE problem.
(b) (5 points) State the definition of a harmonic function.
(c) (5 points) Solve the PDE $\partial_{t} u(t, x)-\partial_{x} u(t, x)=0$ with $u(0, x)=x^{4}$.
(d) (5 points) Solve the PDE $\partial_{x y} u(x, y)=0$ where $u(x, y): \mathbb{R}^{2} \rightarrow \mathbb{R}$.
(e) (5 points) Solve the PDE $\partial_{t} u(t, x)+x \partial_{x} u(t, x)=0$ with $u(0, x)=x^{4}$.
2. (a) (5 points) Show that $\int_{\mathbb{R}} e^{-x^{2}} \mathrm{~d} x=\sqrt{\pi}$.
(b) (10 points) Show that the 1 D heat equation $\partial_{t} u-\partial_{x}^{2} u=0$ is not well-posed for $t<0$.

Hint: Consider $u_{n}(t, x)=\frac{1}{n} e^{-n^{2} t}(\sin n x)$.
(c) (10 points) Consider the following initial-boundary value problem

$$
\left\{\begin{array}{l}
\partial_{t} u-\partial_{x}^{2} u=f(t, x), \quad(t, x) \in[0, \infty) \times[0, L] \\
u(0, x)=\phi(x), \\
u(t, 0)=g(t) \quad \text { and } \quad u(t, L)=h(t)
\end{array}\right.
$$

Show that the uniqueness of the above problem by energy method.
(d) (10 points) Solve the 1D heat equation with variable dissipation:

$$
\partial_{t} u-\partial_{x}^{2} u+7 t^{6} u=0, \quad \text { for }(t, x) \in[0, \infty) \times \mathbb{R}_{x} \quad \text { with } u(0, x)=\phi(x) .
$$

3. (5 points) Suppose that $v \in C^{2}\left(B_{1}\right) \cap C^{1}\left(\bar{B}_{1}\right)$ is a subharmonic function in B_{1}, that is, $\Delta v \geq 0$. Show that

$$
\sup _{B_{1}} v \leq \sup _{\partial B_{1}} v .
$$

Hint: Consider $v_{\varepsilon}(x)=v(x)+\varepsilon|x|^{2}$ for $\varepsilon>0$.
4. Suppose that $u \in C^{2}\left(B_{1}\right) \cap C^{1}\left(\bar{B}_{1}\right)$ is a harmonic function in B_{1}.
(a) (5 points) Show that $\Delta\left(u^{2}\right)=2|\nabla u|^{2}$.
(b) (10 points) Suppose that $\eta \in C_{c}^{2}\left(B_{1}\right)$ with $\eta \equiv 1$ in $B_{\frac{1}{2}}$. Show that

$$
\begin{aligned}
\Delta\left(\eta^{2}|\nabla u|^{2}\right) & =2 \eta \Delta \eta|\nabla u|^{2}+2|\nabla \eta|^{2}|\nabla u|^{2} \\
& +8 \eta \sum_{i, j=1}^{3}\left(\partial_{x_{i}} \eta\right)\left(\partial_{x_{j}} u\right)\left(\partial_{x_{i} x_{j}} u\right)+2 \eta^{2} \sum_{i, j=1}^{3}\left(\partial_{x_{i} x_{j}} u\right)^{2} .
\end{aligned}
$$

(c) (10 points) Show that

$$
\Delta\left(\eta^{2}|\nabla u|^{2}\right) \geq\left(2 \eta \Delta \eta-6|\nabla \eta|^{2}\right)|\nabla u|^{2} .
$$

(d) (5 points) Show that there exists $C>0$ such that the function $\left(\eta^{2}|\nabla u|^{2}+C u^{2}\right)$ is a subharmonic function on B_{1}.
(e) (5 points) Conclude that

$$
\sup _{B_{\frac{1}{2}}}|\nabla u| \leq \sqrt{C} \sup _{B_{1}}|u|
$$

