MATH4210: Financial Mathematics

IV: Continuous Time Market, Part A: a martingale approach

Risk-free asset: the interest rate

• Discrete-time market: let $t_k:=k\Delta t$, and the interest rate be $r\geq 0$, then an investment of 1\$ at time $t_0=0$ leads to

$$S_{t_0}^0 = 1$$
, $S_{t_k}^0 = (1 + r\Delta t)^k$, for all $k \ge 1$.

• Continuous-time market: let $\Delta t:=t/k$, and $k\longrightarrow\infty$ so that $\Delta t\longrightarrow0$, then

$$S_t^0 = \lim_{k \to \infty} (1 + r\Delta t)^k = e^{rt}.$$

Risk-free asset: the interest rate

Recall that

$$e := \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n.$$

n (Compounding frequency)	$(1+1/n)^n$ (value of \$1 in one year)
1	2
2	2.25
4	2.44141
12	2.61304
52	2.66373
365	2.69260
10000	2.71815
1000000	2.71828

Risky asset: the Black-Scholes model

The stock price $(S_t)_{0 \le t \le T}$ follows the Black-Scholes model:

$$S_t = S_0 \exp\left(\left(\mu - \sigma^2/2\right)t + \sigma B_t\right), \quad t \ge 0,$$

where B is a standard Brownian motion.

Remark 1

One has

$$S_t = S_0 e^{\mu t} \exp\left(-\frac{\sigma^2}{2}t + \sigma B_t\right),\,$$

so that

$$\mathbb{E}\big[S_t\big] = S_0 e^{\mu t}, \quad t \ge 0.$$

Remark 2

One can also show that the Black-Scholes model is the limit of the binomial model when $\Delta t \longrightarrow 0$.

Dynamic trading

Dynamic trading: let $t_k := k\Delta t$, risky asset price $(S_{t_k})_{k\geq 0}$, interest rate $r\geq 0$.

Discrete-time dynamic trading between t_k and t_{k+1} :

$$\Pi_{t_{k+1}} = \phi_{t_k} S_{t_{k+1}} + (\Pi_{t_k} - \phi_{t_k} S_{t_k}) (1 + r\Delta t)
= \Pi_{t_k} + (\Pi_{t_k} - \phi_{t_k} S_{t_k}) r\Delta t + \phi_{t_k} (S_{t_{k+1}} - S_{t_k}).$$

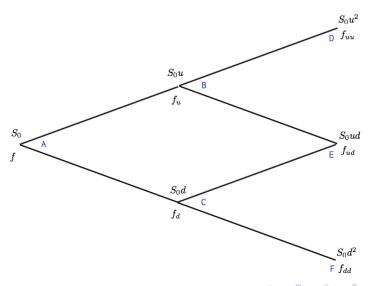
Then

$$\Pi_{t_n} = \Pi_0 + \sum_{k=0}^{n-1} \left(\Pi_{t_k} - \phi_{t_k} S_{t_k} \right) r \Delta t + \sum_{k=0}^{n-1} \phi_{t_k} \left(S_{t_{k+1}} - S_{t_k} \right).$$

The continuous-time limit:

$$\Pi_T = \Pi_0 + \int_0^T (\Pi_t - \phi_t S_t) r dt + \int_0^T \phi_t dS_t.$$

Pricing by the martingale approach: discrete time market



Pricing by the martingale approach: discrete time market

The risk-neutral probability

$$q = \frac{1 + r\Delta t - d}{u - d}.$$

Price of the derivative option:

$$f_{u} = (1 + r\Delta t)^{-1} (q f_{uu} + (1 - q) f_{ud}) = \mathbb{E}^{\mathbb{Q}} [(1 + r\Delta t)^{-1} f_{t_{2}} | S_{t_{1}} = S_{t_{1}}^{u}],$$

$$f_{d} = (1 + r\Delta t)^{-1} (q f_{ud} + (1 - q) f_{dd}) = \mathbb{E}^{\mathbb{Q}} [(1 + r\Delta t)^{-1} f_{t_{2}} | S_{t_{1}} = S_{t_{1}}^{d}],$$

$$f_{t_{0}} = \mathbb{E}^{\mathbb{Q}} [(1 + r\Delta t)^{-2} f_{t_{2}} | S_{t_{0}} = S_{0}],$$

It follows that the following discounted process are martingales under \mathbb{Q} :

$$((1+r\Delta t)^{-k}S_{t_k})_{k=0,1,2}, ((1+r\Delta t)^{-k}f_{t_k})_{k=0,1,2}.$$

The martingale approach: continuous time

• Pricing rule by the martingale approach: The risky asset follows the dynamic:

$$S_t = S_0 \exp\left((\mathbf{r} - \sigma^2/2)t + \sigma B_t^{\mathbb{Q}}\right), \ t \ge 0,$$

where $B^{\mathbb{Q}}$ is a Brownian motion under the risk neutral probability \mathbb{Q} . For an option with payoff function $g(S_T)$, the option price is given by

$$u(t, S_t) := \mathbb{E}^{\mathbb{Q}} \left[e^{-r(T-t)} g(S_T) \middle| S_t \right],$$

so that the following discounted process are martingales:

$$\left(e^{-rt}S_t\right)_{t\in[0,T]}, \quad \left(e^{-rt}u(t,S_t)\right)_{t\in[0,T]}.$$

Remark 3

We will justify this pricing rule later by replication argument.

Black-Scholes Formula for call, put options

More generally, one has:

Theorem 2.1

The the Black-Scholes formula for European call option is

$$C_E(t, S_t) = S_t N(d_1) - K e^{-r(T-t)} N(d_2),$$

and the Black-Scholes formula for European put option is

$$P_E(t, S_t) = Ke^{-r(T-t)}N(-d_2) - S_tN(-d_1),$$

where

$$d_1 = \frac{\ln(S_t/K) + (r + \frac{1}{2}\sigma^2)(T - t)}{\sigma\sqrt{T - t}},$$

and

$$d_2 = \frac{\ln(S_t/K) + (r - \frac{1}{2}\sigma^2)(T - t)}{\sigma\sqrt{T - t}}.$$

Black-Scholes model: the PDE

Theorem 2.2

Let u(t,s) denote the price of a vanilla European option with payoff $g(S_T)$ knowing that $S_t=s$, i.e.

$$u(t,s) := \mathbb{E}^{\mathbb{Q}} \Big[g(S_T) e^{-r(T-t)} \Big| S_t = s \Big].$$

Then u is the solution to the PDE (partial differential equation):

$$\begin{cases} \partial_t u(t,s) + \frac{1}{2}\sigma^2 s^2 \partial_{ss}^2 u(t,s) + rs \partial_s u(t,s) - ru(t,s) = 0, \\ u(T,s) = g(s). \end{cases}$$

• Remark: let $v(t,s) := u(t,s)e^{-rt}$, then v is solution to the PDE:

$$\partial_t v(t,s) + \frac{1}{2}\sigma^2 s^2 \partial_{ss}^2 v(t,s) + rs \partial_s v(t,s) = 0.$$

Call option price properties

The Black-Scholes formula for the vanilla European call option has the following properties

• Delta:
$$\frac{\partial C_E}{\partial S}>0$$
. (Note that $\Delta=\frac{\partial C_E}{\partial S}$.)

• Theta:
$$\frac{\partial C_E}{\partial (T-t)} > 0$$
.

• Rho:
$$\frac{\partial C_E}{\partial r} > 0$$
.

• Vega:
$$\frac{\partial C_E}{\partial \sigma} > 0$$
.

• Gamma:
$$\Gamma = \frac{\partial^2 C_E}{\partial S^2}$$
.

•
$$\frac{\partial C_E}{\partial K} < 0$$
.

Call option price properties

		Call	Put
Delta	$\frac{\partial V}{\partial S}$	$N(d_1)$	$-N(-d_1)=N(d_1)-1$
Gamma	$\frac{\partial^2 V}{\partial S^2}$	$\frac{N'(d_1)}{S\sigma\sqrt{T-t}}$	
Vega	$\frac{\partial V}{\partial \sigma}$	$SN'(d_1)\sqrt{T-t}$	
Theta	$\frac{\partial V}{\partial t}$	$-rac{SN'(d_1)\sigma}{2\sqrt{T-t}}-rKe^{-r(T-t)}N(d_2)$	$-rac{SN'(d_1)\sigma}{2\sqrt{T-t}} + rKe^{-r(T-t)}N(-d_2)$
Rho	$\frac{\partial V}{\partial r}$	$K(T-t)e^{-r(T-t)}N(d_2)$	$-K(T-t)e^{-r(T-t)}N(-d_2)$

Call option price properties

Monotonicity in the factors:

increasing in	call option price	intuitive reason
S(t)	increases	potential payoff increases
K	decreases	potential payoff decreases
T-t	increases	more <i>"time value"</i>
r	increases	present value of fees K decreases
volatility σ	increases	risk increases

Greek Letters

Because the price C_E satisfies

$$\frac{\partial C_E}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 C_E}{\partial S^2} + rS \frac{\partial C_E}{\partial S} - rC_E = 0,$$

we derive that

$$\Theta + \frac{1}{2}\sigma^2 S^2 \Gamma + rS\Delta = rC_E.$$