MATH4210: Financial Mathematics

IV: Continuous Time Market,
Part A: a martingale approach
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From discrete-time to continuous-time market

Risk-free asset: the interest rate

o Discrete-time market: let ¢, := kAt, and the interest rate be r > 0,
then an investment of 1$ at time g = 0 leads to

SO =1, S =(1+rAt)F, forall k> 1.

e Continuous-time market: let At :=t/k, and k — oo so that
At — 0, then
S,? = lim (1+ rAt)k = ",

k—o0
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From discrete-time to continuous-time market

Risk-free asset: the interest rate

Recall that n
e:= lim (1—1—1) .
n—r 00 n

n (Compounding frequency) (14 1/n)™ (value of $1 in one year)
2

2 2.25
2.44141

12 2.61304

52 2.66373

365 2.69260

10000 2.71815

1000000 2.71828
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From discrete-time to continuous-time market

Risky asset: the Black-Scholes model

The stock price (S;)o<i<7 follows the Black-Scholes model:
Sy = Soexp ((u—0/2)t+0By), t>0,

where B is a standard Brownian motion.

One has
o2
Sy = Spett exp ( — ?t + aBt),
so that

E[S;] = Soe**, t>0

Remark 2

| ‘
A

One can also show that the Black-Scholes model is the limit of the
binomial model when At — 0.

MATH4210: Financial Mathematics



From discrete-time to continuous-time market

Dynamic trading

Dynamic trading: let ¢; := kAt, risky asset price (S, )x>0, interest rate
r > 0.

Discrete-time dynamic trading between ¢; and tj1:

Htk+1 = ¢tkStk+1 + (Htk - qbtk- Stk)(l + ’I“At)
= Htk + (Htk — ¢tk Stk)T'At + ¢tk (Stk+1 — Stk)
Then
n—1 n—1
th = H() + Z (Htk — ¢tkStk)7‘At + Z C)tl. (Stk'+l — ka-)-
k=0 k=0
The continuous-time limit:
T T
HT = HQ + / (Hf — ¢tSt)Tdt + / (Df(ij
0 J0
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From discrete-time to continuous-time market

Pricing by the martingale approach: discrete time market

Snu2

D fuu

Soud
E fud

Sod?
F faa
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From discrete-time to continuous-time market

Pricing by the martingale approach: discrete time market

The risk-neutral probability

_1+rAt—d
- w—d

Price of the derivative option:

fu = (+rA) " (qfuu+ (1= @) fua) =EC[(1+ 1A fi,[S;, = S,
fo = Q+rA) 7 (qfua+ (1 —q)faa) = EYQ +rA) " £, ]S =S,
fto = EQ[(l + TAt)_zfQ'Sto = SO]?

It follows that the following discounted process are martingales under Q:

(1+ rAt)_kStk)k:OJ’Q’ (1+ TAt)_kftk)k:O,l,T
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From discrete-time to continuous-time market

The martingale approach: continuous time

e Pricing rule by the martingale approach: The risky asset follows the
dynamic:
Si = Soexp ((r — 0%/2)t + 0BY), t > 0,

where B? is a Brownian motion under the risk neutral probability Q. For
an option with payoff function g(St), the option price is given by

u(t, St) = E? [e_r(T_t)g(kS”T)‘S,g]7

so that the following discounted process are martingales:

(€7Tt5t>te[o,T]’ O St))tEOT}

We will justify this pricing rule later by replication argument.
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Black-Scholes Model

Black-Scholes Formula for call, put options

More generally, one has:

Theorem 2.1

The the Black-Scholes formula for European call option is

Cg(t,S:) = S;N(dy) — Ke " T N(dy),
and the Black-Scholes formula for European put option is

Py(t,S) = Kem """ N(=dp) — ;N (—dy),

where
&= In(S;/K) + (r+ 102)(T — t)
e oV —t ’
and
0 In(S;/K) + (r— 1o?)(T - t)
2 oVT —t '
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Black-Scholes Model

Black-Scholes model: the PDE

Theorem 2.2

Let u(t, s) denote the price of a vanilla European option with payoff
9(ST) knowing that S; = s, i.e.

u(t,s) = EQ [g(ST)e_T(T_t)‘St = s}.

Then w is the solution to the PDE (partial differential equation):

{@u(t, )+ 102s20%,u(t, s) + rsdsu(t, s)—ru(t,s) =0,
uw(T,s) = (s)

e Remark: let v(t,s) := u(t, s)e™"", then v is solution to the PDE:

1
Opv(t,s) + 5 25202, 0(t, s) + rsdsu(t, s) = 0.
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Black-Scholes Model

Call option price properties

The Black-Scholes formula for the vanilla European call option has the
following properties

o Delta: 282 > 0. (Note that A = 2¢x.)
@ Theta: % > 0.

@ Rho: % > 0.

o Vega: 88% > 0.

T - 9°Ce
Gamma: I' = 352 -

ocC
9Cs < 0.
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Black-Scholes Model

Call option price properties

Call Put
peta | 2V N(dy) _N(—di) = N(d) -1
ds
e *V N'(dr)
amma | —— S —
8S? SoyT—1t
v ,
Vega o SN'(d1)yT —¢
(o
SN'(d SN'(d
Theta &7 ——( 1o —rKe "TON(dy) | - ( 1—)0 +rKe " T N(—dy)
ot W =T 2T —1
Rho ‘?9—‘: K(T —t)e "T Y N(dy) ‘ —K(T — t)e "7 Y N(—dy)

MATH4210: Financial Mathematics



Black-Scholes Model

Call option price properties

Monotonicity in the factors:

increasing in | call option price | intuitive reason
S(t) | increases potential payoff increases
K | decreases potential payoff decreases
T —t | increases more “time value”
r | increases present value of fees K decreases
volatility o | increases risk increases
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Black-Scholes Model

Greek Letters

Because the price C'g satisfies

Cg 1 4, ,0°CEp OCE B
T +§O'S 592 +rS—aS —rCg =0,

we derive that 1
O+ 5025% +7rSA =rCp.
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