for- Unistion: 1,5,10,11. There are questions in this assignment. The page number and question number for each question correspond to that in Royden's Real Analysis, 3rd or 4th edition.

In this assignment, $\{x_n\}$ and $\{y_n\}$ are sequences of real numbers. E is a subset of \mathbb{R} . $\times \in \mathbb{R}$ is called a point of closure of E if each neighbourhood of X nitesects E.

Show that $x = \lim x_n$ if and only if every subsequence of $\{x_n\}$ has in turn a subsequence that

How about X & {-00,00}?

2. (3rd: P.39, Q13)

Show that the real number l is the limit superior of the sequence $\{x_n\}$ if and only if (i) given $\epsilon > 0$, $\exists n \text{ such that } x_k < l + \varepsilon \text{ for all } k \geq n, \text{ and (ii) given } \varepsilon > 0 \text{ and } n, \exists k \geq n \text{ such that } x_k > l - \varepsilon.$

(3rd: P.39, Q14)

Show that $\limsup x_n = \infty$ if and only if given Δ and n, $\exists k \geq n$ such that $x_k > \Delta$.

I definition is similarly defined so for bounded seq.

4. (3rd: P.39, Q15) Show that $\liminf x_n \leq \limsup x_n$ and $\liminf x_n = \limsup x_n = l$ if and only if $l = \lim x_n$.

5. (3rd: P.39, Q16) Prove that

 $\limsup x_n + \liminf y_n \le \limsup (x_n + y_n) \le \limsup x_n + \limsup y_n.$

provided the right and left sides are not of the form $\infty - \infty$.

Prove that if $x_n > 0$ and $y_n \ge 0$, then 6. (3rd: P.39, Q17)

 $\limsup (x_n y_n) \le (\limsup x_n)(\limsup y_n)$

provided the product on the right is not of the form $0 \cdot \infty$.

7. (3rd: P.46, Q27)

Show that x is a point of closure of E if and only if there is a sequence $\{y_n\}$ with $y_n \in E$ and $x = \lim y_n$.

8. (3rd: P.46, Q28; 4th: P.20, Q30(i)) A number x is called an accumulation point of a set E if it is a point of closure of $E \setminus \{x\}$. Show

that the set E' of accumulation points of E is a closed set.

9. (3rd: P.46, Q29; 4th: P.20, Q30(ii)) Show that $\overline{E} = E \cup E'$.

10. (3rd: P.46, Q30; 4th: P.20, Q31)

A set E is called isolated if $E \cap E' = \phi$. Show that every isolated set of real numbers is countable.

Let G2 USE. Show that GUMZE (if XERHS but X& U. Shan XEC