$$
\text { Stan-Questions: } 1,5,10,11 \text {. }
$$

MATH 4050 Real Analysis
Assignment 2

There are 1 questions in this assignment. The page number and question number tor each question correspond to that in Royden's Real Analysis, 3rd or 4th edition.
In this assignment, $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are sequences of real numbers. E is a subset of $\mathbb{R} . \quad x \in \mathbb{R}$ is culled a point of closure of E if each neighbourhood of x miteosects E. 1* (3rd: P.39, Q12)

Show that $x=\lim x_{n}$ if and only if every subsequence of $\left\{x_{n}\right\}$ has in turn a subsequence that converges to x.
Q : How about $x \in\{-\infty, \infty\}$?
2. (3rd: P.39, Q13)

Show that the real number l is the limit superior of the sequence $\left\{x_{n}\right\}$ if and only if (i) given $\varepsilon>0$, $\exists n$ such that $x_{k}<l+\varepsilon$ for all $k \geq n$, and (ii) given $\varepsilon>0$ and $n, \exists k \geq n$ such that $x_{k}>l-\varepsilon$.

3\% (3rd: P.39, Q14)
Show that $\lim \sup x_{n}=\infty$ if and only if given Δ and $n, \exists k \geq n$ such that $x_{k}>\Delta$.
\downarrow defrichon is similarly defined as for bounded seq.
4. (3rd: P.39, Q15)

Show that $\liminf x_{n} \leq \lim \sup x_{n}$ and $\liminf x_{n}=\lim \sup x_{n}=l$ if and only if $l=\lim x_{n}$.
5. (3rd: P.39, Q16)

Prove that

$$
\lim \sup x_{n}+\liminf y_{n} \leq \lim \sup \left(x_{n}+y_{n}\right) \leq \lim \sup x_{n}+\lim \sup y_{n}
$$

provided the right and left sides are not of the form $\infty-\infty$.
6. (3rd: P.39, Q17)

$$
\forall u \in \mathbb{N}
$$

Prove that if $x_{n} \geq 0$ and $y_{n} \geq 0$ then

$$
\lim \sup \left(x_{n} y_{n}\right) \leq\left(\lim \sup x_{n}\right)\left(\lim \sup y_{n}\right)
$$

provided the product on the right is not of the form $0 \cdot \infty$.
7. (3rd: P.46, Q27)

Show that x is a point of closure of E if and only if there is a sequence $\left\{y_{n}\right\}$ with $y_{n} \in E$ and $x=\lim y_{n}$.
8. (3rd: P.46, Q28; 4th: P.20, Q30(i))

A number x is called an accumulation point of a set E if it is a point of closure of $E \backslash\{x\}$. Show that the set E^{\prime} of accumulation points of E is a closed set.

Show that $\bar{E}=E \cup E^{\prime}$.
10. (3rd: P.46, Q30; 4th: P.20, Q31)

A set E is called isolated if $E \cap E^{\prime}=\phi$. Show that every isolated set of real numbers is countable.

$$
1 \|^{*} \text {. Let } G \supseteq U \Delta E \text {. Show that }
$$

$G \cup U \supseteq E($ if $x \in R H S$ but $x \notin U$ tan $x \in G)$

