Math 4030, HW 5. Due: 27 Nov 2023

- (1) Let $X : U \to S$ be a regular parametrized surface with orientation N. A parallel surface to X is the following parametrized surface: $\tilde{X} = X + aN$ where $a \in \mathbb{R}$ is a constant.
 - (a) Show that

$$\tilde{X}_u \times \tilde{X}_v = (1 - 2Ha + Ka^2)X_u \times X_v$$

where H and K denote the mean curvature and Gaussian curvature of X respectively.

(b) Show that at the regular point of \tilde{X} , the Gaussian curvature is given by

$$\frac{K}{1 - 2Ha + Ka^2}$$

and the mean curvature is given by

$$\frac{H-Ka}{1-2Ha+Ka^2}$$

- (2) Show that there are no minimal surface in \mathbb{R}^3 which is closed and bounded.
- (3) Let $F: U \in \mathbb{R}^2 \to \mathbb{R}^3$ be given by

 $F(u, v) = (u \sin \alpha \cos v, u \sin \alpha \sin v, u \cos \alpha)$

where α is a constant and $U = \{(u, v) : u > 0\}.$

- (a) Show that F is a local diffeomorphism of U onto a cone C with the vertex at the origin and 2α as the angle of the vertex.
- (b) Is F a local isometry?
- (4) Show that if $X : U \to S$ is an isothermal parametrization, i.e. $E = G = \lambda(u, v)$ and F = 0, then

$$K = -\frac{1}{2\lambda} \Delta \log \lambda.$$