Math 4030, HW 4. Due: 13 Nov 2023

(1) Given a regular surface $S \subset \mathbb{R}^{3}$ with orientation N. Let $p \in S$, show that the mean curvature H at $p \in S$ is given by

$$
H=\frac{1}{\pi} \int_{0}^{\pi} k_{n}(\theta) d \theta
$$

where $k_{n}(\theta)$ is the normal curvature at p along the direction making an angle θ with a fixed direction.
(2) Show that the sum of the normal curvatures for any pair of orthogonal directions at a point $p \in S$ is a constant.
(3) Find the Gaussian curvature and mean curvature of the surface $z=a x y$ where $a \neq 0$.
(4) Let S be a regular surface with orientation N. Let $V \subset S$ be an open set in S and $f: V \rightarrow \mathbb{R}$ be any nowhere-zero differentiable function on V. Let v_{1}, v_{2} be two differentiable vector on V such that at each $p \in V,\left\{v_{1}, v_{2}\right\}$ are orthonormal and $N=v_{1} \times v_{2}$.
(a) Show that the Gaussian curvature K of V is given by

$$
K=\frac{1}{f^{3}}\left\langle f N, d(f N)\left(v_{1}\right) \times d(f N)\left(v_{2}\right)\right\rangle
$$

(b) Using (a), show that if f is the function

$$
\sqrt{\frac{x^{2}}{a^{4}}+\frac{y^{2}}{b^{4}}+\frac{z^{2}}{c^{4}}}
$$

restricted on the ellipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

then the Gaussian curvature is given by $K=(a b c)^{-2} f^{-4}$.

