Math 4030, HW 3. Due: 30 Oct 2023

(1) Compute the first fundamental form of the following parametrized surfaces where they are regular:
(a) $X(u, v)=(a \sin u \cos v, b \sin u \sin v, c \cos u)$;
(b) $X(u, v)=\left(a u \cosh v, b u \sinh v, u^{2}\right)$.
(2) Show that

$$
X(u, v)=(u \sin \alpha \cos v, u \sin \alpha \sin v, u \cos \alpha)
$$

where $u \in(0,+\infty, v \in(0,2 \pi)$ and α is a constant, is a parametrization of the cone with the angle of vertex 2α. Prove that the curve given by

$$
\gamma(t)=X(c \exp (t \cdot \sin \alpha \cot \beta), t)
$$

where c, β are constants, intersects the generators of the cone (i.e. $v=$ const.) under the constant angle β.
(3) The gradient of a differentiable function $f: S \rightarrow \mathbb{R}$ on a regular surface S is a differentiable map $\operatorname{grad}(f): S \rightarrow \mathbb{R}^{3}$ which assigns to each point $p \in S$ a vector $\operatorname{grad}(f)_{p} \in T_{p} S$ so that for all $v \in T_{p} S$,

$$
\left\langle\operatorname{grad}(f)_{p}, v\right\rangle=d f_{p}(v)
$$

Here we are regarding $d f_{p}$ as a real-valued linear function defined on $T_{p} S$.
(a) Express $\operatorname{grad}(f)$ in term of the coefficient of the first fundamental form (i.e. $E, F, G), X_{u}, X_{v}$ and the partial derivatives of f on the local parametrization $X: U \rightarrow S$ of S at $p \in X(U)$.
(b) Let $p \in S$ and $\operatorname{grad}(f)_{p} \neq 0$. Show that $v \in T_{p} S$ with $|v|=1$ satisfies

$$
d f_{p}(v)=\max \left\{d f_{p}(u): u \in T_{p} S,|u|=1\right\}
$$

if and only if $v=\operatorname{grad}(f)_{p} /\left|\operatorname{grad}(f)_{p}\right|$.
(4) Suppose S is a regular surface with orientation N so that $d N_{p} \neq$ 0 for all $p \in S$. If the mean curvature H vanishes on S, show that the Gauss map $N: S \rightarrow \mathbb{S}^{2}$ satisfies

$$
\left\langle d N_{p}(v), d N_{p}(w)\right\rangle=-K_{p}\langle v, w\rangle
$$

for all $p \in S$ and $v, w \in T_{p} S$. Here K_{p} denotes the Gaussian curvature at $p \in S$.

