Math 4030, HW 3. Due: 30 Oct 2023

- (1) Compute the first fundamental form of the following parametrized surfaces where they are regular:
 - (a) $X(u, v) = (a \sin u \cos v, b \sin u \sin v, c \cos u);$
 - (b) $X(u, v) = (au \cosh v, bu \sinh v, u^2).$
- (2) Show that

$$X(u, v) = (u \sin \alpha \cos v, u \sin \alpha \sin v, u \cos \alpha)$$

where $u \in (0, +\infty, v \in (0, 2\pi)$ and α is a constant, is a parametrization of the cone with the angle of vertex 2α . Prove that the curve given by

$$\gamma(t) = X(c \exp(t \cdot \sin \alpha \cot \beta), t)$$

where c, β are constants, intersects the generators of the cone (i.e. v = const.) under the constant angle β .

(3) The gradient of a differentiable function $f: S \to \mathbb{R}$ on a regular surface S is a differentiable map $\operatorname{grad}(f): S \to \mathbb{R}^3$ which assigns to each point $p \in S$ a vector $\operatorname{grad}(f)_p \in T_pS$ so that for all $v \in T_pS$,

$$\langle \operatorname{grad}(f)_p, v \rangle = df_p(v).$$

Here we are regarding df_p as a real-valued linear function defined on T_pS .

- (a) Express $\operatorname{grad}(f)$ in term of the coefficient of the first fundamental form (i.e. E, F, G), X_u, X_v and the partial derivatives of f on the local parametrization $X : U \to S$ of S at $p \in X(U)$.
- (b) Let $p \in S$ and $\operatorname{grad}(f)_p \neq 0$. Show that $v \in T_pS$ with |v| = 1 satisfies

$$df_p(v) = \max\{df_p(u) : u \in T_pS, |u| = 1\}$$

if and only if $v = \operatorname{grad}(f)_p / |\operatorname{grad}(f)_p|$.

(4) Suppose S is a regular surface with orientation N so that $dN_p \neq 0$ for all $p \in S$. If the mean curvature H vanishes on S, show that the Gauss map $N: S \to \mathbb{S}^2$ satisfies

$$\langle dN_p(v), dN_p(w) \rangle = -K_p \langle v, w \rangle$$

for all $p \in S$ and $v, w \in T_pS$. Here K_p denotes the Gaussian curvature at $p \in S$.