Math 4030, HW 2. Due: 16 Oct 2023
(1) Show that $\left\{(x, y, z): x^{2}+y^{2}=1\right\}$ is a regular surface.
(2) Suppose $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ is a differentiable function. If 0 is not a regular value of f, can we conclude that $f^{-1}(0)$ is not a regular surface? Explain your answer.
(3) Suppose $f: \mathbb{S}^{2} \rightarrow \mathbb{S}^{2}$ is a map given by $f(x, y, z)=-(x, y, z)$. Show that f is a diffeomorphism.
(4) Show that the paraboloid $z=x^{2}+y^{2}$ is diffeomorphic to \mathbb{R}^{2}.
(5) Suppose S is a regular surface given by the graph of a differentiable function $z=f(x, y)$. Let $p=\left(x_{0}, y_{0}, f\left(x_{0}, y_{0}\right)\right) \in S$, show that the tangent plane of S at p is given
$z=f\left(x_{0}, y_{0}\right)+f_{x}\left(x_{0}, y_{0}\right) \cdot\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right) \cdot\left(y-y_{0}\right)$.
Moreover, show that the tangent plane is the graph of the differential $d f_{q}$ where $q=\left(x_{0}, y_{0}\right)$.

