Math 2050, HW 1. Due: 2 Oct 2023
(1) Given the parametrized curve $\alpha: \mathbb{R} \rightarrow \mathbb{R}^{3}$ where

$$
\alpha(s)=\left(a \cos \frac{s}{c}, a \sin \frac{s}{c}, b \frac{s}{c}\right)
$$

and $c^{2}=a^{2}+b^{2}$.
(a) Show that the parameter s is the arc-length;
(b) Find the curvature and torsion of α;
(c) Show that the tangent lines to α make a constant angle with the z-axis.
(2) Show that a regular curve is a circular helix if the curvature $\kappa>0$ is a constant and the torsion $\tau \neq 0$ is a constant.
(3) Let $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{3}$ be a regular curve such that $\|\gamma(t)\| \leq 1$ for all $t \in \mathbb{R}$. If there is $t_{0} \in \mathbb{R}$ so that $\left\|\gamma\left(t_{0}\right)\right\|=1$, show that $\left|\kappa\left(t_{0}\right)\right| \geq 1$.
(4) Suppose a planar curve is given by $\rho=\rho(\theta), a \leq \theta \leq b$ in the polar coordinate.
(a) Show that the arc-length is given by

$$
\int_{a}^{b} \sqrt{\rho^{2}+\left(\rho^{\prime}\right)^{2}} d \theta
$$

(b) Express the curvature $\kappa(\theta)$ of the curve in term of ρ.
(5) Suppose all normal of a parametrized curve $\alpha: I \rightarrow \mathbb{R}^{3}$ pass through a fixed point, show that the trace $\alpha(I)$ of the curve is contained in a circle.

