MATH3360 Mathematical Imaging Midterm Examination

Name: _____ Student ID: __

You have to answer all five questions. The total score is **100**. **Please show your steps** unless otherwise stated.

- 1. Let $\mathcal{O}: M_{2\times 2}(\mathbb{R}) \to M_{2\times 2}(\mathbb{R})$ be a linear image transformation.
 - (a) Suppose \mathcal{O} is separable and $\mathcal{O}(f) = AfB$ for any $f \in M_{2\times 2}(\mathbb{R})$, where $A, B \in M_{2\times 2}(\mathbb{R})$. Prove that the transformation matrix of \mathcal{O} is $H = B^T \otimes A$.
 - (b) Let

$$H = \begin{pmatrix} a & 4 & 4 & 2\\ 2 & a-2 & b & 3\\ c & 2 & 12 & 9-d\\ 1 & 3 & d & 9 \end{pmatrix}$$

be the transformation matrix corresponding to \mathcal{O} . Determine suitable $a, b, c, d \in \mathbb{R}$ such that \mathcal{O} is separable and find matrices A and B.

- (c) Suppose \mathcal{O} is defined by convolution and $\mathcal{O}(f) = h * f$ for any $f \in M_{2 \times 2}(\mathbb{R})$, where $h \in M_{2 \times 2}(\mathbb{R})$. Prove that the transformation matrix H of \mathcal{O} is in the form: $H = \begin{pmatrix} H_1 & H_2 \\ H_2 & H_1 \end{pmatrix}$, where $H_1, H_2 \in M_{2 \times 2}(\mathbb{R})$.
- 2. Let

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

- (a) Compute SVD of A. Express A as a linear combination of its elementary images.
- (b) Find a rank 2 approximation A_2 such that $||A_2 A||_F = 2$. Please prove your answer with details.
- (c) Using (a), determine the SVD of a distorted image

$$\widetilde{A} = \begin{pmatrix} 1+\epsilon & 2+\tau & 0\\ 2+\tau & 1+\epsilon & 0\\ 0 & 0 & 2+\tau \end{pmatrix},$$

where ϵ and τ are small positive real numbers. Please explain your answer with details.

3. Recall that the 0-th Haar function is

$$H_0(t) = \begin{cases} 1 & \text{if } 0 \le t < 1\\ 0 & \text{otherwise,} \end{cases}$$

and the other Haar functions are defined by

$$H_{2^{p}+n}(t) = \begin{cases} \sqrt{2}^{p} & \text{if } \frac{n}{2^{p}} \le t < \frac{n+0.5}{2^{p}} \\ -\sqrt{2}^{p} & \text{if } \frac{n+0.5}{2^{p}} \le t < \frac{n+1}{2^{p}} \\ 0 & \text{otherwise} \end{cases}$$

for $p = 0, 1, 2, \cdots$ and $n = 0, 1, 2, \cdots, 2^p - 1$.

(a) Give the definition of Haar transformation for 4×4 images.

(b) Suppose

$$A = \begin{pmatrix} 5 & 0 & 0 & 3 \\ 2 & 1 & 1 & 4 \\ 2 & 1 & 1 & 4 \\ 4 & 0 & 0 & 6 \end{pmatrix},$$

please compute the Haar transform A_{Haar} of A.

(c) Suppose A_{Haar} is corrupted by noise, such that

Let \widetilde{A} be the reconstructed image from $\widetilde{A}_{\text{Haar}}$. Discuss which pixels of \widetilde{A} have different intensity values from A. Find the error $||\widetilde{A} - A||_F$.

4. Let $I \in M_{N \times N}(\mathbb{R})$ be a $N \times N$ image, whose indices are taken from 0 to N - 1. Assuming that I is periodically extended. Let k_0, l_0 be two integers between 0 and N - 1. Recall that the discrete Fourier transform (DFT) of an $N \times N$ image I is defined as

$$DFT(I)(m,n) = \frac{1}{N^2} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} I(k,l) e^{-2\pi\sqrt{-1}(\frac{km+ln}{N})}$$

for all $0 \le m, n \le N - 1$.

- (a) Consider another image I_1 defined by: $I_1(k,l) = I(k k_0, l l_0)$ for all $0 \le k, l \le N 1$. Write $DFT(I_1)$ in terms of DFT(I).
- (b) Consider another image I_2 defined by: $I_2(k,l) = I(-l+l_0, -k+k_0)$ for all $0 \le k, l \le N-1$. Write $DFT(I_2)$ in terms of DFT(I).

Please show all your steps clearly (including how the changes of variables are applied, indices are shifted and so on). Missing details will lead to mark deduction.

END OF PAPER