
DFT in Matrix form

Lecture 9

Recall :

Theorem : Consider  a Nx N image g ,
the JET of g can be written  as :
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Image decomposition by DFT
Suppose § = DFTC g) = U g U
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Remark:
Nate that UU
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= # I

. a
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.
U is not unitary .

If we normalize U tou = TNU
.

Then UN is unitary !

Some other definition of DFT :
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i . Normalizing the definition of DFT ⇒ unitary I can be applied !

BUT : Inverse DFT must be adjusted ! !



Mathematics of JPEG
Lecture 9:

( Optional )

¢l= - Yz

Example : k= -3
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Make the extension as  a reflection about ( o
,

o )
,

line axis k=o and the axis to
.

Done by shifting the  image by ( k
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After some messy simplication ,
we can get :



Definition: (Even symmetric discrete cosine transform [EDCT])

Remark : . Smart  idea to get  a decomposition Consisting only of cosine function

( by reflection and shifting ! )

• Can be formulated in matrix form

• Again ,
it  is a separable image transformation .



Also involving cosine

functions only !

elementary images

under EDCT !

This is what  JPEG

does ! !



Why is DFT useful in imaging:
DFT of convolution :

N - I N - I

Recall :

g.
* win ,
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Then
,

the DFT of g * w = MN DFT (g) DFT I w )

i DFT of convolution can be reduced to simple multiplication !


