Lecture 9
Recall: DFT in Matrix form
Theorem: Consider a $N \times N$ image g, the DFT of g can be written as:
$\hat{g}=u g u$ (DFT in matrix form)
where $u=\left(U_{k l}\right)_{0 \leqslant k, l \leq N-1} \in M_{N * N}$ and $u_{k l}=\frac{1}{N} e^{-j \frac{2 \pi k l}{N}}$.

Theorem: $U^{*} U=\frac{1}{N} I$ where ${U^{*}}^{*}=(\bar{U})^{\top}$ (conjugate transpose)

$$
\begin{array}{rlrl}
u u^{*}=\frac{1}{N} I . & (\overline{a+j b}=a-j b) \\
\therefore u^{-1}=(N u)^{*} & \left(\overline{e^{j \theta}}=\overline{\cos \theta+j \sin \theta}\right. & =\cos \theta-j \sin \theta \\
& \left.=e^{-j \theta}\right)
\end{array}
$$

Image decomposition by DFT
Suppose $\hat{g}=\operatorname{DFT}(g)=u g u$
Then: $U U^{*}=\frac{1}{N} I=U^{*} U$

$$
\therefore \quad g=(N u)^{*} \hat{g}(N u)^{*}
$$

$\therefore g=\sum_{k=0}^{N-1} \sum_{l=0}^{N-1} \hat{g}_{k l} \vec{\omega}_{k} \vec{W}_{l}^{\top}$ Elementary image of DFT
where $\vec{\omega}_{k}=k^{\text {th }} \cot$ of $(N U)^{*}$

Remark:
Note that $U U^{*}=\frac{1}{N} I . \therefore U$ is not unitary.
If we normalize U to $\tilde{U}=\sqrt{N} U$. Then \tilde{U} is unitary!
Some other definition of $D F T$:
(ID) $\hat{f}(m)=\frac{1}{\sqrt{N}} \sum_{n=0}^{k-1} f(k) e^{-j\left(\frac{2 \pi m k}{N}\right)}$
(2D) $\hat{f}(m, n)=\frac{1}{N} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} f(k, l) e^{-j 2 \pi\left(\frac{m k+n l}{N}\right)}$
In this care, let $\tilde{u}=\left(\tilde{u}_{k l}\right)_{0 \leqslant k, l \leqslant N-1} ; \tilde{U}_{k l}=\frac{1}{\sqrt{N}} e^{-j \frac{2 \pi k l}{N}}$ Then:
Then, $\tilde{u}=\sqrt{N} U$

$$
\hat{f}=\tilde{u} f \tilde{u}
$$

\therefore Normalizing the definition of DFT \Rightarrow unitary \tilde{U} can be applied! BUT: Inverse DFT must be adjusted!!

Lecture 9:
Mathematics of JPEG (Optional)
Consider a $N \times N$ image f. Extend f to a $2 M \times 2 N$ image \tilde{f}, whose indices are taken from $[-M, M-1]$ and $[-N, N-1]$.
Define $f(k, l)$ for $-M \leq k \leq M-1$ and $-N \leq l \leq N-1$ such that

Make the extension as a reflection about $(0,0)$, the axis $k=0$ and the axis $l=0$. Done by shifting the image by $(1 / 2,1 / 2)$

After shifting

Now, we compute the DFT of (shifted) \tilde{f} :

$$
\begin{aligned}
F(m, n) & =\frac{1}{(2 M)(2 N)} \sum_{k=-M}^{M-1} \sum_{l=-N}^{N-1} f(k, l) e^{-j \frac{2 \pi}{2 M} m\left(k+\frac{1}{2}\right)} e^{-j \frac{2 \pi}{2 N} n\left(l+\frac{1}{2}\right)} \\
& =\frac{1}{4 M N} \sum_{k=-M}^{M-1} \sum_{l=-N}^{N-1} f(k, l) e^{-j\left(\frac{\pi}{M} m\left(k+\frac{1}{2}\right)+\frac{\pi}{N} n\left(l+\frac{1}{2}\right)\right)} \\
& =\frac{1}{4 M N}(\underbrace{\sum_{k=-M}^{-1} \sum_{l=-N}^{-1}}_{A_{1}}+\underbrace{\sum_{k=-M}^{-1} \sum_{l=0}^{N-1}}_{A_{2}}+\underbrace{\sum_{k=0}^{M-1} \sum_{l=-N}^{-1}}_{A_{3}}+\underbrace{\sum_{k=0}^{M-1} \sum_{l=0}^{N-1}}_{A_{4}}) \\
& f(k, l) e^{-j\left(\frac{\pi}{M} m\left(k+\frac{1}{2}\right)+\frac{\pi}{N} n\left(l+\frac{1}{2}\right)\right)}
\end{aligned}
$$

After some messy simplication, we can get:

$$
A_{1}+A_{2}+A_{3}+A_{4}=\frac{1}{M N} \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} f(k, l) \cos \left[\frac{m \pi}{M}\left(k+\frac{1}{2}\right)\right] \cos \left[\frac{n \pi}{N}\left(l+\frac{1}{2}\right)\right]
$$

Definition: (Even symmetric discrete cosine transform [EDCT])
Let f be a $M \times N$ image, whose indices are taken as $0 \leq k \leq M-1$ and $0 \leq l \leq N-1$. The even symmetric discrete cosine transform (EDCT) of f is given by:

$$
\hat{f}_{e c}(m, n)=\frac{1}{M N} \sum_{k=0}^{M-1} \sum_{l=0}^{N-1} f(k, l) \cos \left[\frac{m \pi}{M}\left(k+\frac{1}{2}\right)\right] \cos \left[\frac{n \pi}{N}\left(l+\frac{1}{2}\right)\right]
$$

with $0 \leq m \leq M-1,0 \leq n \leq N-1$
Remark: Smart idea to get a decomposition consisting only of cosine function (by reflection and shifting!)

- Can be formulated in matrix form
- Again, it is a separable image transformation.
- The inverse of EDCT can be explicitly computed. More specifically, the inverse EDCT is defined as:

$$
f(k, l)=\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} C(m) C(n) \hat{f}_{e c}(m, n) \cos \frac{\pi m(2 k+1)}{2 M} \cos \frac{\pi n(2 l+1)}{2 N} \quad(* *)
$$

where $C(0)=1, C(m)=C(n)=2$ for $m, n \neq 0 \quad$ Also involving cosine

- Formula ${ }^{(* *)}$ can be expressed as matrix multiplication: functions only!

$$
\begin{array}{r}
f=\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} \hat{f}_{e c}(m, n){\overrightarrow{\vec{f}_{m}} \vec{T}_{n}^{T}}^{\text {elementary images }} \\
\text { under EDCT! }
\end{array}
$$

where: $\vec{T}_{m}^{\prime}=\left(\begin{array}{c}T_{m}(0) \\ T_{m}(1) \\ \vdots \\ T_{m}(M-1)\end{array}\right), \vec{T}_{n}^{\prime \prime}=\left(\begin{array}{c}T_{n}^{\prime}(0) \\ T_{n}^{\prime}(1) \\ \vdots \\ T_{n}^{\prime}(N-1)\end{array}\right)$ with $T_{m}(k)=C(m) \cos \frac{\pi m(2 k+1)}{2 M}$
and $T_{n}^{\prime}(k)=C(n) \cos \frac{\pi n(2 k+1)}{2 N}$.

Why is DFT useful in imaging:

1. DFT of convolution:

Recall: $g * \omega(n, m)=\sum_{n^{\prime}=0}^{N-1} \sum_{m^{\prime}=0}^{N-1} g\left(n-n^{\prime}, m-m^{\prime}\right) \omega\left(n^{\prime}, m^{\prime}\right)$

$$
\left(g, m \in M_{N \times M}(\mathbb{R})\right)
$$

Then, the DFT of $g * \omega=\operatorname{MNDFT}(g) \operatorname{DFT}(\omega)$
$\therefore D F T$ of convolution can be reduced to simple multiplication!

