# Lecture 24: Chan-Vese Segmentation

## Implicit representation of curves

Let  $I: \Omega \to \mathbb{R}$  be an image. Let  $\varphi: \Omega \to \mathbb{R}$  be a real-valued function defined on  $\Omega$ . Suppose  $\Omega_0$  is the object in  $\Omega$ , we may assume that  $\varphi(z) > 0$  inside  $\Omega_0$  and  $\varphi(z) < 0$  outside  $\Omega_0$  (i.e. in  $\Omega \setminus \Omega_0$ ), Then, the zero-level set  $\varphi^{-1}(\{0\}) = \{\vec{p} \in \Omega : \varphi(\vec{p}) = 0\}$  is a curve in  $\Omega$ , which reoresents the boundary of the object. This is called the **level set representation** of the curve and  $\varphi$  is called the <u>level set function</u>.

#### Computation of the level set function

Let  $\Omega_0$  be the object. Want:  $\varphi: \Omega \to \mathbb{R}$  representing  $\Omega_0$ . Suppose we know the inside and outside regions of  $\Omega_0$ . Let  $d(\vec{x}, \partial \Omega_0) = \inf_{\vec{y} \in \partial \Omega_0} ||\vec{x} - \vec{y}|| = \text{minimal distance from } \vec{x} \text{ to the boundary of } \Omega_0$ ,  $\partial \Omega_0$ . We can define the level set function as:

$$\varphi(\vec{x}) = \begin{cases} d(\vec{x}, \partial \Omega_0) \text{ if } \vec{x} \in \text{ inside} \\ -d(\vec{x}, \partial \Omega_0) \text{ if } \vec{x} \in \text{ outside} \end{cases}$$

Obviously,  $\varphi^{-1}(\{0\}) = \partial \Omega_0$ .

Remark. • Working with the level set function for curve evolution increases the dimension of the problem (from 1D to 2D).

• If  $\varphi : \mathbb{R}^3 \to \mathbb{R}$ , then  $\varphi^{-1}(\{0\})$  is a surface embedded in  $\mathbb{R}^3$  (implicit function theorem).

**Example 1** . Consider:  $\varphi(\vec{x}) = 2 - (x^2 + y^2)$ . Then,  $\varphi^{-1}(\{0\}) = \text{circle centred at the origin with radius} = \sqrt{2}$ .

To expand the circle, we consider:  $\varphi(\vec{x}) = (2 + \varepsilon) - (x^2 + y^2)$ . Then,  $\varphi_{\varepsilon}^{-1}(\{0\}) = \text{circle centred at the origin with radius} = <math>\sqrt{2 + \varepsilon}$  (>  $\sqrt{2}$ ).

**Remark.** By modifying  $\varphi$ , we can evolve a curve.

**Example 2.** Consider a function  $\Phi : \mathbb{R}^2 \to \mathbb{R}$  which looks like:



Let  $\varphi_K(x,y) = K - \Phi(x,y)$ . Then,

 $\varphi_{-5}^{-1}(\{0\}) = \text{ one simple closed curve}$ 

 $\varphi_{-1}^{-1}(\{0\}) = \text{ two simple closed curves touching each other}$ 

 $\varphi_3^{-1}(\{0\})$  = two separated simple closed curve

**Remark.** Level set method allows topological change. Therefore, level set based segmentation algorithm can evolve one closed curve to several closed curves capturing the boundaries of multiple objects.

## Level set method for image segmentation

**Goal**: Find a level set function  $\varphi$  that minimizes:

$$E(\varphi) = \underbrace{F_1(\varphi)}_{\text{smoothness}} + \underbrace{F_2(\varphi)}_{\text{data ficlelity}}$$

#### **Assumption**:

- 1.  $F_1(\varphi) = \text{smoothness term.}$  Smoothness is achieved by minimizing the length of  $\varphi^{-1}(\{0\})$ .
- 2.  $F_2(\varphi) = \text{want } \{\varphi > 0\}$  matches with the object in the image. We assume the image is piecewise constant. Therefore, each object has uniform (constant) image intensity.

## Geometric quantities obtained from level set representation

Outward unit normal: 
$$\frac{\nabla \phi(\vec{x})}{|\nabla \phi(\vec{x})|}$$
,  $\vec{x} \in \Gamma = \phi^{-1}(\{0\})$ 

Curvature of contour: 
$$\kappa(\vec{x}) = div\left(\frac{\nabla \phi(\vec{x})}{|\nabla \phi(\vec{x})|}\right); \vec{x} \in \Gamma$$

Curve length element ds:  $ds = \delta(\phi(\vec{x}))|\nabla\phi(\vec{x})|d\vec{x}$ , where  $\delta = \text{delta function}$ .

# Chan-Vese Segmentation model/ Active Contour without edge

Minimize: 
$$E(\varphi) = F_1(\varphi) + F_2(\varphi)$$

For  $F_1(\varphi)$ , we choose it as:

$$Length(\Gamma) = \int_{\Gamma} d\sigma$$

$$= \int \delta(\varphi(\vec{x})) |\nabla \phi(\vec{x})| d\vec{x}$$

$$= \int |\nabla H(\varphi(\vec{x}))| d\vec{x}$$

where 
$$H(x) = \text{Heaviside function} = \begin{cases} 1 & \text{if } x \geq 0 \\ 0 & \text{if } x < 0 \end{cases}$$
 and  $\nabla H(\varphi(\vec{x}))$  means the gradient of

 $H \circ \varphi : \mathbb{R}^2 \to \mathbb{R}$  at  $\vec{x}$ . (Coarea formula)

Usually, a smooth approximation of H(x) is used (e.g.  $H_k(x) = \frac{1}{1 + e^{-2kx}}$ )

For  $F_2(\varphi)$ , we use:

$$\int_{\text{inside }\Gamma} |I(x,y) - c_1|^2 dx dy + \int_{\text{outside }\Gamma} |I(x,y) - c_2|^2 dx dy$$

where  $c_1$  = average I inside  $\Gamma$ ,  $c_2$  = average I outside  $\Gamma$ .

#### Observe:



Therefore, the overall Chan-Vese Segmentation model: Find level set function  $\varphi$  and intensities  $c_1, c_2$  such that they minimize:

$$E(\varphi, c_1, c_2) = \int_{\Omega} |\nabla H(\varphi(\vec{x}))| d\vec{x} + \lambda \int_{\{\varphi > 0\}} |I(x, y) - c_1|^2 dx dy + \lambda \int_{\{\varphi < 0\}} |I(x, y) - c_2|^2 dx dy$$

Again,  $\nabla H(\varphi(\vec{x}))$  means the gradient of  $H \circ \varphi : \mathbb{R}^2 \to \mathbb{R}$  at  $\vec{x}$ .

If  $\varphi$  is fixed, the contour  $\Gamma = \varphi^{-1}\{0\}$  is fixed. Then,

$$0 = \frac{\partial}{\partial c_1} E(\Gamma, c_1, c_2) = -2 \int_{\{\varphi > 0\}} (I(x, y) - c_1) \, dx \, dy$$

Therefore, 
$$c_1 = \frac{\int_{\{\varphi>0\}} I(x,y) \ dx \ dy}{\int_{\{\varphi>0\}} \ dx \ dy} = \frac{\int_{\Omega} H(\varphi)I(x,y) \ dx \ dy}{\int_{\Omega} H(\varphi) \ dx \ dy}.$$

Similarly, 
$$c_2 = \frac{\int_{\{\varphi < 0\}} I(x, y) \ dx \ dy}{\int_{\{\varphi < 0\}} \ dx \ dy} = \frac{\int_{\Omega} (1 - H(\varphi)) I(x, y) \ dx \ dy}{\int_{\Omega} (1 - H(\varphi)) \ dx \ dy}$$

Now, fixing  $c_1, c_2$ , we proceed to look for a time-dependent level set function  $\varphi = \varphi(t, x, y)$  that minimizes  $E(\varphi)$ .

Using gradient descent method, we get

$$\frac{\partial \varphi}{\partial t} = \underbrace{\delta(\varphi)}_{\text{smooth approx.}} \left[ \underbrace{\nabla \cdot \left( \frac{\nabla \varphi}{|\nabla \varphi|} \right)}_{\text{curvature}} - \lambda (I - c_1)^2 + \lambda (I - c_2)^2 \right],$$

where  $\varphi(0, x, y) = \varphi_0(x, y) = \text{initial prescribed level set function.}$ 

We leave it as an exercise to check the formula.