Lecture 16
Method 4: Constrained least square filtering
Disadvantages of Wiener's fitter:
(1) $|N(u, v)|^{2}$ and $|F(u, v)|^{2}$ must be known/guessed
(2) Constant estimation of ratio is not always suitable Goal: Consider a least square minimization model.
Let $g=\underset{\substack{\hat{e} \\ \text { degradation }}}{h * f+n_{n}}$
In matrix form, $\vec{g}=D \vec{f}_{n}+\vec{n}_{N}$

Stacked image of g transformation matrix of $h * f$
(or)

Constrained least square problem:
Given \vec{g}, we need to find an estimation of \vec{f} such that it minimizes:

$$
\begin{gathered}
E(f)=\sum_{x=0}^{M-1} \sum_{y=0}^{N-1}|\Delta f(x, y)|^{2} \text { subject to the constraint : } \\
\|\vec{g}-D \vec{f}\|^{2}=\varepsilon
\end{gathered}
$$

A is the Laplacian in the discrete case

Let $\overrightarrow{p * f}=S(p * f)=L \vec{f}$
Then: $E(\vec{f})=(L \vec{f})^{\top}(L \vec{f})$ transformation matrix representing the convolution with p.

We will prove:
Theorem: The constrained least square problem has the optimal solution in the spatial domain that satisfies:

$$
\left(D^{\top} D+\gamma L^{\top} L\right) \vec{f}=D_{V}^{\top} \vec{g}
$$

for some suitable parameter γ.
In the frequency domain,

$$
\begin{gathered}
\hat{F}(u, v):=\operatorname{DFT}(f)(u, v)=\frac{1}{N^{2}} \frac{H(u, v)}{|H(u, v)|^{2}+\gamma|P(u, v)|^{2}} G(u, v) \\
(H=\operatorname{DFT}(h) ; \quad G(u, v)=\operatorname{DFT}(g) ; P(u, v)=\operatorname{DFT}(p) \text { where } \\
\left.p=\left(\begin{array}{ccc}
0 & \ddots & 0 \\
\vdots & 1 & -4 \\
0 & 1 & \vdots \\
0 & \cdots & 0
\end{array}\right)\right)
\end{gathered}
$$

Remark: Constrained least square filtering:

$$
\begin{aligned}
& T(u, v)=\frac{1}{N^{2}} \frac{H(u, v)}{|H(u, v)|^{2}+\gamma|P(u, v)|^{2}} \\
& \text { Let } \widetilde{F}(u, v)=T(u, v) G(u, v)
\end{aligned}
$$

Compute Inverse DFT of $\widetilde{F}(u, v)$.

How about in the frequency (Fourier) domain?
Two important theorems
Notation: Let θ be a linear transformation defined by: $O(f)=k * f$ for $a l l \quad f \in M_{N X N}(\mathbb{R})$, where $k \in \operatorname{MnXN}(\mathbb{R})$.
let $D \in M_{N^{2} \times N^{2}}(\mathbb{R})$ be the transformation matrix representing O. at is, $\quad \rho(O(f))=D \rho(f)$.
Here, ρ is the stacking operator. $\rho(I)$ is the vectorized image of I ($|s|$ col of I becomes first n entries of $S(I)$, and col of I becomes second n entries of $\rho(I), \ldots$, etc)

How about in the frequency (Fourier) domain?
Two important theorems
Notation: Let θ be a linear transformation defined by: $O(f)=k * f$ for $a l l \quad f \in M_{N X N}(\mathbb{R})$, where $k \in \operatorname{MnXN}(\mathbb{R})$.
Let $D \in M_{N^{2} \times N^{2}}(\mathbb{R})$ be the transformation matrix representing 0 .
That is, $\quad \rho(O(f))=D \rho(f)$.
Here, ρ is the stacking operator. $\rho(I)$ is the vectorized image of I ($|s|$ col of I becomes first n entries of $\rho(I)$, and col of I becomes second n entries of $\rho(I), \ldots$, etc)

Theorem 1: Let $K=D F T(k)$. Then:

$$
D=W \Lambda_{D} W^{-1} \text { and } D^{\top}=W \bar{\Lambda}_{D} W^{-1} \quad \text { where. }
$$

for $W=W_{N} \otimes W_{N} \quad$ where $\quad W_{N}=\left(\frac{1}{\sqrt{N}} e^{\frac{2 \pi j}{N} m n}\right)_{0 \leq m, n \leq N-1} \in M_{N \times N}(\mathbb{C})$

Example: Let $\theta(f)=\underset{\substack{M_{2 \times 2}}}{k} * f$ where $K=\operatorname{DFT}(k)=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$
Let $D \in M_{4 \times 4}(\mathbb{R})$ be the transformation matrix of O.
Then:

$$
\begin{aligned}
& \left.D=W \Lambda_{0} W^{-1} \text { where } \Lambda_{D}=\left(\begin{array}{ccc}
a & & 0 \\
& c & 0 \\
0 & b & \\
& & \\
& & \\
& & \\
& (1 / \sqrt{2})
\end{array}\right) . \begin{array}{l}
1 / \sqrt{2} \\
\hline
\end{array}\right)
\end{aligned}
$$

and $W=W_{2} \otimes W_{2} \quad\left(W_{2}=\left(\begin{array}{cc}1 / \sqrt{2} & 1 / \sqrt{2} \\ 1 / \sqrt{2} & -1 / \sqrt{2}\end{array}\right)\right)$

$$
=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right) & \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right) \\
\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right) & -\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right)
\end{array}\right)
$$

Theorem 2: Let $W=W_{N} \otimes W_{N} \in M_{N^{2} \times N^{2} \text {. }}^{\text {Th er }}$
Let $f=\left(f_{m n}\right)_{0 \leq m, n \leq N-1} \in M_{N X N}(\mathbb{R})$. Consider $\rho(f)=\vec{f} \in \mathbb{R}^{N^{2}}$.
Then:

$$
\left.W^{-1} \vec{f}=N\left(\begin{array}{c}
F(0,0) \\
F(1,0) \\
\vdots \\
F(N-1,0) \\
F(0,1) \\
F(1,1) \\
\vdots \\
F(N-1,1) \\
\vdots \\
F(0, N-1) \\
F(1, N-1) \\
\vdots \\
F(N-1, N-1)
\end{array}\right)\right\} \begin{gathered}
\text { st col } \\
\text { of } F \\
\text { and } \operatorname{col} \\
\text { of } F
\end{gathered} \quad \text { where } \quad F=\operatorname{Not} \cot \text { of } F \quad(f)
$$

Example: Assume that:

$$
G=\left(\begin{array}{lll}
g_{00} & g_{01} & g_{02} \\
g_{10} & g_{11} & g_{12} \\
g_{20} & g_{21} & g_{22}
\end{array}\right) \quad \text { and } \quad W_{3}^{-1}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & \exp \left(-\frac{2 \pi j}{3}\right) & \exp \left(-\frac{2 \pi j}{3} 2\right) \\
1 & \exp \left(-\frac{2 \pi j}{3} 2\right) & \exp \left(-\frac{2 \pi j}{3}\right)
\end{array}\right)
$$

Then:

$$
W^{-1}=W_{3}^{-1} \otimes W_{3}^{-1}=\frac{1}{3}\left(\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & e^{-\frac{2 \pi j}{3}} & e^{-\frac{2 \pi j}{3} 2} & 1 & e^{-\frac{2 \pi j}{3}} & e^{-\frac{2 \pi j}{3} 2} & 1 & e^{-\frac{2 \pi j}{3}} \\
e^{-\frac{2 \pi j}{3} 2} \\
1 & e^{-\frac{2 \pi j}{3} 2} & e^{-\frac{2 \pi j}{3}} & 1 & e^{-\frac{2 \pi j}{3} 2} & e^{-\frac{2 \pi j}{3}} & 1 & e^{-\frac{2 \pi j}{3} 2} \\
1 & 1 & 1 & e^{-\frac{2 \pi j}{3}} \\
1 & e^{-\frac{2 \pi j}{3}} & e^{-\frac{2 \pi j}{3} 2} & e^{-\frac{2 \pi j}{3}} & e^{-\frac{2 \pi j}{3}} & e^{-\frac{2 \pi j}{3} 2} & e^{-\frac{2 \pi j}{3} 2} & e^{-\frac{2 \pi j}{3} 2}
\end{array} e^{-\frac{2 \pi j}{3} 2} .\right.
$$

$$
\begin{aligned}
& W^{-1} \stackrel{\rightharpoonup}{g}=\frac{1}{3}\left(\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & e^{-\frac{2 \pi j}{3}} & e^{-\frac{2 \pi j}{3} 2} & 1 & e^{-\frac{2 \pi j}{3}} & e^{-\frac{2 \pi j}{3} 2} & 1 & e^{-\frac{2 \pi j}{3}} \\
1 & e^{-\frac{2 \pi j}{3} 2} \\
1 & 1 & 1 & e^{-\frac{2 \pi j}{3} 2} & e^{-\frac{2 \pi j}{3}} & 1 & e^{-\frac{2 \pi j}{3} 2} & e^{-\frac{2 \pi j}{3}} \\
1 & e^{-\frac{2 \pi j}{3}} & e^{-\frac{2 \pi j}{3}} & e^{-\frac{2 \pi j}{3} 2} \\
1 & e^{-\frac{2 \pi j}{3}} & e^{-\frac{2 \pi j}{3} 2} & e^{-\frac{2 \pi j}{3}} & e^{-\frac{2 \pi j}{3} 2} & 1 & e^{-\frac{2 \pi j}{3} 2} & 1 \\
1 & e^{-\frac{2 \pi j}{3} 2} & e^{-\frac{2 \pi j}{3}} & e^{-\frac{2 \pi j}{3}} & 1 & e^{-\frac{2 \pi j}{3} 2} & e^{-\frac{2 \pi j}{3} 2} & e^{-\frac{2 \pi j}{3}} \\
1 & 1 & 1 & e^{-\frac{2 \pi j}{3} 2} & e^{-\frac{2 \pi j}{3} 2} & e^{-\frac{2 \pi j}{3} 2} & e^{-\frac{2 \pi j}{3}} & e^{-\frac{2 \pi j}{3}} \\
1 & e^{-\frac{2 \pi j}{3}} \\
1 & e^{-\frac{2 \pi j}{3}} & e^{-\frac{2 \pi j}{3} 2} & e^{-\frac{2 \pi j}{3} 2} & 1 & e^{-\frac{2 \pi j}{3}} & e^{-\frac{2 \pi j}{3}} & e^{-\frac{2 \pi j}{3} 2} \\
1 & e^{-\frac{2 \pi j}{3} 2} & e^{-\frac{2 \pi j}{3}} & e^{-\frac{2 \pi j}{3} 2} & e^{-\frac{2 \pi j j}{3}} & 1 & e^{-\frac{2 \pi j}{3}} & 1
\end{array} e^{-\frac{2 \pi j}{3} 2} .\right)\left(\begin{array}{l}
g_{00} \\
g_{10} \\
g_{20} \\
g_{01} \\
g_{11} \\
g_{21} \\
g_{02} \\
g_{12} \\
g_{22}
\end{array}\right)
\end{aligned}
$$

$\therefore W^{-1} \vec{g}=3 \rho(G)$

Suppose D is the transformation matrix representing the convolution with h.

Let $H=\operatorname{DFT}(h) \in M_{N \times N}$
Diagonalization of D :

Stack H to form the diagonal matrix.

Suppose L is the transformation matrix representing the convolution with p.

Let $P=\operatorname{DFT}(p) \in M_{N \times N}$

$$
\begin{aligned}
& \text { Diagonalization of } L \text { : }
\end{aligned}
$$

Stack P to form the diagonal matrix.

Combining these information and substitute into the "governing" equation:

$$
\left(D^{\top} D+\gamma L^{\top} L\right) \vec{f}=D^{\top} \stackrel{\rightharpoonup}{g}
$$

We get: $W\left(\Lambda_{D}^{*} \Lambda_{\mathrm{D}}+\gamma \Lambda_{L}^{*} \Lambda_{L}\right) W^{-1} \vec{f}=\mathscr{W} \Lambda_{D}^{*} W^{-1} \vec{g}$
We can check that:
(1)

$$
\Lambda_{\boldsymbol{D}}^{*} \Lambda_{\boldsymbol{p}}=\left(\begin{array}{llllll|}
N^{4}|H(0,0)|^{2} & & & & & \\
& N^{4}|H(1,0)|^{2} & & & \\
& & \ddots & & \\
& & & N^{4}|H(N-1,0)|^{2} & & \\
& & & & \ddots & \\
& & & & & N^{4}|H(N-1, N-1)|^{2}
\end{array}\right)
$$

(2)

$$
\Lambda_{L}^{*} \Lambda_{L}=\left(\begin{array}{llllll|}
N^{4}|P(0,0)|^{2} & & & & & \\
& N^{4}|P(1,0)|^{2} & & & \\
& & \ddots & & N^{4}|P(N-1,0)|^{2} & \\
\\
& & & & \ddots & \\
& & & & & N^{4}|P(N-1, N-1)|^{2}
\end{array}\right)
$$

(3) $W^{-1} \vec{f}=N \mathcal{S}(F), W^{-1} \vec{g}=N \mathcal{S}(G)$ where $F=D F T(f), G=D F T(g)$.

Combining these information and substitute into the "governing" equation:

$$
\left(D^{\top} D+\gamma L^{\top} L\right) \stackrel{\rightharpoonup}{f}=D^{\top} \stackrel{\rightharpoonup}{g}
$$

We get: $W\left(\Lambda_{\mathrm{D}}^{*} \Lambda_{\mathrm{D}}+\gamma \Lambda_{L}^{*} \Lambda_{L}\right) W^{-1} \vec{f}=\mathscr{W} \Lambda_{\mathrm{D}}^{*} W^{-1} \vec{g}$

$$
\begin{aligned}
& \therefore|H(0,0)|^{2}+\gamma|P(0,0)|^{2} \\
& |H(1,0)|^{2}+\gamma|P(1,0)|^{2} \\
& |H(N-1,0)|^{2}+\left.\gamma P(N-1,0)\right|^{2} \\
& N^{2}\left(\begin{array}{lll}
\overline{H(0,0)} & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& &
\end{array}\right.
\end{aligned}
$$

Combining all these, we get for every (u, v),

$$
\begin{aligned}
& N^{4}\left[|H(u, v)|^{2}+\gamma|\mathbb{P}(u, v)|^{2}\right] N F(u, v)=N^{2} \overline{H(u, v)} N G(u, v) \\
& \Rightarrow N^{2} \frac{|H(u, v)|^{2}+\gamma|\mathbb{P}(u, v)|^{2}}{\overline{H(u, v)}} F(u, v)=G(u, v)
\end{aligned}
$$

Summary: Constrained least square filtering minimizes:

$$
E(\vec{f})=(L \stackrel{\rightharpoonup}{f})^{\top}(L \vec{f})
$$

Subject to the constraint that:

$$
\|\underbrace{\stackrel{\rightharpoonup}{g}-H \vec{f}}_{\vec{n}}\|^{2}=\varepsilon
$$

(allow fixed amount of noise)

Image sharpening is the frequency domain
Goal: Enhance image so that it shows more obvious edges.
Method 1: Laplacian masking
Recall that: $\Delta f(x, y)=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}$.
In the discrete case, $\Delta f(x, y) \approx f(x+1, y)+f(x, y+1)+f(x, y-1)+f(x-1, y)-4 f(x, y)$

$$
\text { or } \Delta f \approx p * f \text { where } p=\left(\begin{array}{cc}
1 \\
1 & -4 \\
1 & 1
\end{array}\right)
$$

We can observe that $-\Delta f$ captures the edges of the image add more edges (leaving other region zero)

$$
\therefore \text { Shapen image }=f+\overbrace{(-\Delta f)}^{\text {ada }}
$$

In the frequency domain: $\operatorname{DFT}(g)=\operatorname{DFT}(f)-\operatorname{DFT}(\Delta f)$

$$
\begin{aligned}
& =\operatorname{DF} T(f)-\operatorname{CDF}(p) \cdot D F T(f) \\
\therefore \operatorname{DF} T(g) & =\left[1-H_{\text {laplacian }}(u, v)\right] \operatorname{DFT}(f)(u, v)
\end{aligned}
$$

"̈DFT(p)

Method 2: Unsharp masking
Idea: Add high-frequency component
Definition: Let $f=$ input image (blurry)
Let $f_{\text {smooth }}=$ smoother $^{\text {image }}$
Define a sharper image as:

$$
g(x, y)=f(x, y)+k\left(f(x, y)-f_{\text {smooth }}(x, y)\right)
$$

When $k=1$, the method is called unsharp masking.
When $k>1$, the method is called highboost filtering.
In the frequency domain, let $\operatorname{DF} T\left(f_{\text {smooth }}\right)(u, v)=\underbrace{H_{L p}}_{\text {Low-pass filter }}(u, v) \operatorname{DF} T(f)(u, v)$

$$
\text { Then: } \operatorname{DFT}(g)=\left[1+k\left(1-H_{L P}(u, v)\right] \operatorname{DFT}(f)(u, v)\right.
$$

Image denoising in the spatial domain
Definition: Linear filter = modify pixel value by a linear combination of pixel values of local neighbourhood.

Example 1: Let f be an $N \times N$ image. Extend the image periodically. Modify f to \tilde{f} by:

$$
\tilde{f}(x, y)=f(x, y)+3 f(x-1, y)+2 f(x+1, y) .
$$

This is a linear filter.
Example 2: Define

$$
\tilde{f}(x, y)=\frac{1}{4}(f(x+1, y)+f(x-1, y)+f(x, y+1)+f(x, y-1))
$$

This is also a linear filter.

Recall: The discrete convolution is defined as:

$$
I * H(u, v)=\sum_{m=-M}^{M} \sum_{n=-N}^{N} I(u-m, v-n) H(m, n)
$$

(Linear combination of pixel values around (u, v))
Therefore, Linear filter is equivalent to a discrete convolution.

Geometric illustration

(spatial)
(frequency)

Commonly used filter (linear)

- Mean filter:

$$
\begin{array}{ccc}
-1 & 0 & 1 \\
\downarrow & \downarrow & \downarrow
\end{array}
$$

$$
H=\frac{1}{9}\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right) \leftarrow-1
$$

(Here, we only write down the entries of the matrix for indices $-1 \leq k, l \leq 1$ for simplicity. All other matrix entries are equal to 0 .)

This is called the mean filtering with window size 3×3.

- Gaussian filter: The entries of H are given by the Gaussian function $g(r)=$ $\exp \left(-\frac{r^{2}}{2 \sigma^{2}}\right)$, where $r=\sqrt{x^{2}+y^{2}}$.

