Math 3360: Mathematical Imaging

Assignment 2

Due: October 6 before 1159PM

Please give reasons in your solutions.

1. (a) Let $A, B \in M_{4 \times 4}(\mathbb{R})$ and the image transformation $\mathcal{O}: M_{4 \times 4}(\mathbb{R}) \rightarrow M_{4 \times 4}(\mathbb{R})$ is defined by:

$$
\mathcal{O}(f)=A f B
$$

please show that the transformation matrix H of \mathcal{O} is given by:

$$
H=B^{T} \otimes A
$$

(b) In more general cases, let $A, B \in M_{n \times n}(\mathbb{R})$ and the image transformation $\mathcal{O}: M_{n \times n}(\mathbb{R}) \rightarrow$ $M_{n \times n}(\mathbb{R})$ is defined by:

$$
\mathcal{O}(f)=A f B
$$

please show that the transformation matrix H of \mathcal{O} is also given by:

$$
H=B^{T} \otimes A
$$

2. Compute the singular value decomposition(SVD) of

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1
\end{array}\right)
$$

Please show all your steps in detail.
3. Let $H_{n}(t)$ be the n-th Haar function, where $n \in \mathbb{N} \cup\{0\}$.
(a) Give the definition of $H_{n}(t)$.
(b) Write down the Haar transformation matrix \tilde{H} for 4×4 images.
(c) Suppose $A=\left(\begin{array}{llll}5 & 4 & 6 & 6 \\ 6 & 1 & 6 & 3 \\ 1 & 2 & 1 & 5 \\ 6 & 4 & 6 & 1\end{array}\right)$. Compute the Haar transform $A_{\text {Haar }}$ of A, and compute the reconstructed image \tilde{A} after setting the two smallest (in absolute value) nonzero entries of $A_{\text {Haar }}$ to 0 .
4. For an $n \times n$ image g of real entries, let $g=U f V^{T}$, where $U, V, f \in M_{n \times n}(\mathbb{R})$.
(a) Show that

$$
g=\sum_{i=1}^{n} \sum_{j=1}^{n} f_{i j}{\overrightarrow{u_{i}}}_{\vec{v}_{j}^{T}}
$$

where

$$
U=\left(\begin{array}{llll}
\overrightarrow{u_{1}} & \overrightarrow{u_{2}} & \cdots & \overrightarrow{u_{n}}
\end{array}\right), V^{T}=\left(\begin{array}{c}
{\overrightarrow{v_{1}}}^{T} \\
{\overrightarrow{v_{2}}}^{T} \\
\vdots \\
\overrightarrow{v_{n}}
\end{array}\right),
$$

(b) Show that if f is diagonal, then the trace of g is given by

$$
\operatorname{tr}(g)=\sum_{k=1}^{n} g_{k k}=\sum_{k=1}^{n} \sum_{l=1}^{n} f_{l l} u_{k l} v_{k l} .
$$

5. Suppose $J=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$, Compute $\hat{J}=\operatorname{DFT}(J)$.
6. (Optimal) Programming exercise: Compress a digital image using SVD, please try to show the rank- k approximations with $k=5,10,50$ respectively.

Hint: You can use any programming language (python, matlab, R and so on) with any thirdparty library, you DON'T need to implement the SVD algorithm yourself. Please submit the following as your solutions:

1. your code,
2. original image,
3. rank- k approximations for $k=5,10,50$.
