Math 3360: Mathematical Imaging

Assignment 1

Due: September 22, 2023

Please give reasons in your solutions.

1. Prove or disprove if the following image transformation $\mathcal{O}: M_{N \times N}(\mathbb{R}) \rightarrow M_{N \times N}(\mathbb{R})$ is linear.
(a) Let $a \in \mathbb{R}, A \in M_{N \times N}(\mathbf{R})$. For any $f \in M_{N \times N}(\mathbf{R}), \mathcal{O}(f)=a f+A f^{T}$, where f^{T} is the transpose of f.
(b) Let $A \in M_{N \times N}(\mathbf{R})$. For any $f \in M_{N \times N}(\mathbf{R}), \mathcal{O}(f)=f A f$.
(c) Let $k \in M_{N \times N}(\mathbf{R})$. For any $f \in M_{N \times N}(\mathbf{R}), \mathcal{O}(f)=k * f$, where $*$ denote the discrete convolution.
2. Let $A=\left(a_{i j}\right)_{1 \leq i, j \leq 2}=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ and $B=\left(b_{i j}\right)_{1 \leq i, j \leq 2}=\left(\begin{array}{ll}1 & 3 \\ 5 & 6\end{array}\right)$. Define the image transformation $\mathcal{O}=M_{2 \times 2}(\mathbb{R}) \rightarrow M_{2 \times 2}(\mathbb{R})$ by $\mathcal{O}(f)=A f B$. Let

$$
H^{1,2}=\left(\begin{array}{ll}
h^{1,2}(1,1) & h^{1,2}(1,2) \\
h^{1,2}(2,1) & h^{1,2}(2,2)
\end{array}\right)
$$

where $h^{\alpha, \beta}(x, y)$ is the point spread function of \mathcal{O}. Compute $H^{1,2}$.
3. Let $f=\left(f_{i j}\right)_{1 \leq i, j \leq 3}=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$ and $B=\left(b_{i j}\right)_{1 \leq i, j \leq 3}=\left(\begin{array}{ccc}0 & 0 & -1 \\ 0 & 0 & -1 \\ -1 & -1 & 4\end{array}\right)$. f and B are periodically extended.
(a) Compute $f * B$, where $*$ denote the discrete convolution.
(b) Let $g=f * B \in M_{3 \times 3}(\mathbb{R})$, show that for all $1 \leq \alpha, \beta \leq 3$

$$
g(\alpha, \beta)=4 f_{\alpha, \beta}-f_{\alpha+1, \beta}-f_{\alpha-1, \beta}-f_{\alpha, \beta+1}-f_{\alpha, \beta-1}
$$

where $g(\alpha, \beta)$ are the α-th row, β-th column of g.
4. Define a linear image transformation $\mathcal{O}: M_{N \times N}(\mathbf{R}) \rightarrow M_{N \times N}(\mathbf{R})$ by

$$
\mathcal{O}(f)(\alpha, \beta)=\frac{f(\alpha+1, \beta)+2 f(\alpha-1, \beta)+3 f(\alpha, \beta+1)+f(\alpha, \beta-1)-8 f(\alpha, \beta)}{4} .
$$

Show that $\mathcal{O}(f)=k * f$ for some $k \in M_{N \times N}(\mathbf{R})$ and find this k.
5. Compute the singular value decomposition (SVD) of

$$
A=\left(\begin{array}{lll}
2 & 2 & 0 \\
2 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Please show all your steps in detail.

