Math 3360: Mathematical Imaging

Assignment 5
Due: November 29 before 1159PM

Please give reasons in your solutions.

1. Consider a periodically extended 4×4 image $I=(I(x, y))_{0 \leq x, y \leq 3}$ given by:

$$
I=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & b & 0 & 1 \\
a & 0 & 0 & 0 \\
0 & 0 & c & 1
\end{array}\right)
$$

Given that the discrete Laplacian ΔI of I is given by the formula:

$$
\Delta I(x, y)=-4 I(x, y)+I(x+1, y)+I(x-1, y)+I(x, y+1)+I(x, y-1) \text { for } 0 \leq x, y \leq 3
$$

We perform the Laplacian masking on I to get a sharpen image $I_{\text {sharp }}$. Suppose $I_{\text {sharp }}$ is given by

$$
I_{\text {sharp }}=\left(\begin{array}{cccc}
0 & 0 & 5 & -3 \\
-1 & -5 & -1 & 5 \\
5 & 0 & 0 & -3 \\
-2 & 0 & -2 & 5
\end{array}\right)
$$

Find a, b and c. (Hint: You may want to use the formula of Laplacian masking in the spatial domain: $I_{\text {sharp }}=I-\Delta I$.)
2. Consider a 4×4 periodically extended image $I=(I(k, l))_{0 \leq k, l \leq 3}$ given by:

$$
I=\left(\begin{array}{cccc}
a & 0 & c & 0 \\
0 & b & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

where a, b and c are positive numbers.
We apply the 3×3 mean filter to I to obtain $I^{\text {mean }}$. Suppose $I^{\text {mean }}(0,3)=1, I^{\text {mean }}(1,2)=$ $8 / 9$ and $I^{\text {mean }}(1,0)=5 / 9$. Find a, b and c.
3. Consider the following periodically extended 4×4 image $f=(f(x, y))_{0 \leq x, y \leq 3}$:

$$
f=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 4
\end{array}\right)
$$

(a) Consider the ideal low-pass filter $H_{L P}=\left(H_{L P}(x, y)\right)_{0 \leq x, y \leq 3}$ of radius 2. Explain with details why $H_{L P}$ is given by:

$$
I=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1
\end{array}\right)
$$

(b) We apply the ideal low-pass filter of radius $2, H_{L P}$ to perform unsharp masking on f to get $f_{\text {sharp }}$. Find $f_{\text {sharp }}$. Please show all your steps.
4. Apply the following filters:
the 3×3 mean filter;
the 3×3 median filter;
convolution filter $\frac{1}{12}\left(\begin{array}{cccc}6 & 2 & 0 & 2 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right)$ where the indices are starting from 0 , on the following periodically extended 4×4 images:
(a) $\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
(b) $\left(\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right)$
(c) $\left(\begin{array}{cccc}1 & 0 & 3 & -2 \\ 0 & -1 & 2 & 0 \\ 0 & 3 & 1 & 0 \\ -2 & 0 & 0 & 1\end{array}\right)$
5. Consider an image denoising model to find $f:[a, b] \times[a, b] \rightarrow \mathbb{R}$ that minimizes:

$$
E(f)=\int_{a}^{b} \int_{a}^{b}(f(x, y)-g(x, y))^{2}+\int_{a}^{b} \int_{a}^{b} K(x, y)|\nabla f(x, y)|^{2} d x d y
$$

Assuming $f(x, y)=g(x, y)=0$ for (x, y) on the boundary of $[a, b] \times[a, b]$. Suppose f minimizes $E(f)$. Show that f satisfies:

$$
f(x, y)-g(x, y)-\nabla \cdot(K(x, y) \nabla f(x, y))=0 \text { in }[a, b] \times[a, b]
$$

