MATH3360 Mathematical Image Processing Final Practice

1. The Butterworth high-pass filter H with radius D_{0} and order n is defined as

$$
H(u, v)=\frac{1}{1+\left(D_{0} / D(u, v)\right)^{n}}
$$

where $D(u, v)=u^{2}+v^{2}$. Given an image $I=(I(m, n))_{0 \leq m, n \leq 2 N}$ and $N>100$, apply Butterworth high-pass filter on $\operatorname{DFT}(I)=(\hat{I}(u, v))_{0 \leq u, v \leq 2 N}$ then get $G(u, v)$. Suppose

$$
G(3,4)=\frac{1}{2} \hat{I}(3,4) \text { and } G(2 N-6,8)=\frac{16}{17} \hat{I}(2 N-6,8),
$$

where $\hat{I}(3,4) \neq 0$ and $\hat{I}(2 N-6,8) \neq 0$. Find D_{0} and n.
2. Consider a 4×4 periodically extended image $I=(I(k, l))_{0 \leq k, l \leq 3}$ given by:

$$
I=\left(\begin{array}{llll}
a & b & a & b \\
b & a & b & a \\
a & b & a & b \\
b & a & b & a
\end{array}\right)
$$

where a and b are distinct positive numbers.
Let $h=(h(k, l))_{0 \leq k, l \leq 3}=\frac{1}{8}\left(\begin{array}{cccc}4 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right)$, which is periodically extended.
The Gaussian low-pass filter H of variance σ^{2} is defined by:

$$
H(u, v)=\exp \left(-\frac{u^{2}+v^{2}}{\sigma^{2}}\right)
$$

Let $I_{1}(u, v)=H_{1}(u, v) \operatorname{DFT}(I)(u, v)$, where the H_{1} is the Gaussian low-pass filter of variance $a b$. Suppose $I_{1}(2,2)=e^{-\frac{1}{4}} D F T(I)(2,2)$ and $h * f(2,1)=6$. Find a and b.
3. Compute the degradation functions in the frequency domain that correspond to the following $M \times N$ convolution kernels h, i.e. find $H \in M_{M \times N}(\mathbb{C})$ such that

$$
D F T(h * f)(u, v)=H(u, v) D F T(f)(u, v)
$$

for any periodically extended $f \in M_{M \times N}(\mathbb{R})$:
(a) Assuming integer k satisfies $k \leq \min \left\{\frac{M}{2}, \frac{N}{2}\right\}$,

$$
h_{1}(x, y)= \begin{cases}\frac{1}{(2 k+1)^{2}} & \text { if } \operatorname{dist}(x, M \mathbb{Z}) \leq k \text { and } \operatorname{dist}(y, N \mathbb{Z}) \leq k \\ 0 & \text { otherwise }\end{cases}
$$

(b) Letting $r>1$,

$$
h_{2}(x, y)= \begin{cases}\frac{r}{r+4} & \text { if } D(x, y)=0 \\ \frac{1}{r+4} & \text { if } D(x, y)=1 \\ 0 & \text { otherwise }\end{cases}
$$

(c)

$$
h_{3}(x, y)= \begin{cases}\frac{1}{4} & \text { if } D(x, y)=0 \\ \frac{1}{8} & \text { if } D(x, y)=1 \\ \frac{1}{16} & \text { if } D(x, y)=2 \\ 0 & \text { otherwise }\end{cases}
$$

(d)

$$
h_{4}(x, y)= \begin{cases}-4 & \text { if } D(x, y)=0 \\ 1 & \text { if } D(x, y)=1 \\ 0 & \text { otherwise }\end{cases}
$$

(e) Letting $a, b \in \mathbb{Z}$ and $T \in \mathbb{N} \backslash\{0\}$ such that $|a|(T-1)<M$ and $|b|(T-1)<N$,

$$
h_{5}(x, y)= \begin{cases}\frac{1}{T} & \text { if }(x, y) \in\{(a t, b t): t=0,1, \cdots, T-1\} \\ 0 & \text { otherwise }\end{cases}
$$

4. For any periodically extended $N \times N$ image f, define

$$
\begin{aligned}
G_{x}(f)(x, y) & =\frac{1}{4} f(x+1, y)+\frac{1}{2} f(x, y)+\frac{1}{4} f(x-1, y) \\
\text { and } G_{y}(f)(x, y) & =\frac{1}{4} f(x, y+1)+\frac{1}{2} f(x, y)+\frac{1}{4} f(x, y-1) .
\end{aligned}
$$

(a) Find an $N \times N$ image h such that for any periodically extended $N \times N$ image f,

$$
h * f=G_{x} \circ G_{y}(f)
$$

(b) Let $H(u, v)$ be the LPF such that

$$
D F T(h * f)(u, v)=H(u, v) D F T(f)(u, v)
$$

where h is the convolution kernel from (a). Using H, perform unsharp masking (i.e. $k=1$) on the following periodically extended 4×4 image

$$
f=\left(\begin{array}{llll}
4 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

5. Let $W_{N}(n, k)=\frac{1}{\sqrt{N}} e^{2 \pi j \frac{n k}{N}}$ for $0 \leq n, k \leq N-1$ and $W=W_{N} \otimes W_{N}$. Suppose $N=4$, we have following problems:
(a) Prove that $W^{-1}=\overline{W_{N}} \otimes \overline{W_{N}}$.
(b) Show that $W^{-1} \mathcal{S}(f)=N \mathcal{S}(\hat{f})$ for any $f \in M_{N \times N}(\mathbb{C})$, where $\hat{f}=D F T(f)$.
6. Let $f=\left(f_{i j}\right)_{0 \leq i, j \leq N-1} \in M_{N \times N}(\mathbb{R})$ be a clean image. Suppose f is blurred to g under a motion which is given by:

$$
g(x, y)=\sum_{t=0}^{3} f(x+t, y)
$$

Show that $\operatorname{DFT}(g)(u, v)=H(u, v) D F T(f)(u, v)$ and find $H(u, v)$.
7. Given $N^{2} \times N^{2}$ block-circulant real matrices D and $L, N \times N$ image g and fixed parameter $\varepsilon>0$, the constrained least square filtering aims to find $f \in M_{N \times N}$ that minimizes:

$$
E(f)=[L \mathcal{S}(f)]^{T}[L \mathcal{S}(f)]
$$

subject to the constraint:

$$
[\mathcal{S}(g)-D \mathcal{S}(f)]^{T}[\mathcal{S}(g)-D \mathcal{S}(f)]=\varepsilon
$$

where \mathcal{S} is the stacking operator.
Given that the optimal solution f that solves the constrained least square problem satisfies $\left[\lambda D^{T} D+L^{T} L\right] \mathcal{S}(f)=\lambda D^{T} \mathcal{S}(g)$ for some parameter λ. Find $\operatorname{DFT}(f)$ in terms of $\operatorname{DFT}(g)$, $\operatorname{DFT}(h), \operatorname{DFT}(p)$ and λ, where $L \mathcal{S}(\varphi)=\mathcal{S}(p * \varphi)$ for any $\varphi \in M_{N \times N}(\mathbb{R})$.
8. Given $g \in M_{N \times N}(\mathbb{R})$, block circulant $D, L_{1}, L_{2} \in M_{N^{2} \times N^{2}}(\mathbb{R})$ and $\varepsilon>0$, we aim to minimize $\left\|L_{1} \vec{f}\right\|_{2}^{2}+\left\|L_{2} \vec{f}\right\|_{2}^{2}$ subject to $\|\vec{g}-D \vec{f}\|_{2}^{2}=\varepsilon$ over $f \in M_{N \times N}(\mathbb{R})$, where $\vec{f}=\mathcal{S}(f)$ and $\vec{g}=\mathcal{S}(g)$ vectorized by the stack operator \mathcal{S}.
Given Lagrange multiplier λ for the equality constraint, show that if f is a minimizer of the above constrained minimization problem, then

$$
\left(\lambda D^{T} D+L_{1}^{T} L_{1}+L_{2}^{T} L_{2}\right) \vec{f}=\lambda D^{T} \vec{g}
$$

Please prove your answer with details.
9. Given a 2D simple connected domain D and a noisy image $I: D \rightarrow \mathbb{R}$, we consider the following image denoising model to restore the original clean image $f: D \rightarrow \mathbb{R}$ that minimizes:

$$
E(f)=\int_{D}(f(x, y)-I(x, y))^{2} d x d y+\int_{D} \sqrt{|\nabla f(x, y)|^{2}+\epsilon} d x d y
$$

where small parameter $\epsilon>0$.
(a) If f minimizes $E(f)$, show that f could satisfy the following conditions:

$$
\left\{\begin{array}{l}
2 f(x, y)-2 I(x, y)-\nabla \cdot\left(\frac{\nabla f(x, y)}{\sqrt{|\nabla f(x, y)|^{2}+\epsilon}}\right)=0 \text { for }(x, y) \in D \\
\left\langle\frac{\nabla f(x, y)}{\sqrt{|\nabla f(x, y)|^{2}+\epsilon}}, \vec{n}\right\rangle=0 \text { for }(x, y) \in \partial D .
\end{array}\right.
$$

where \vec{n} is the outward normal vector on ∂D.
(b) Derive an iterative scheme, which updates f_{n} to f_{n+1} with time step $\tau>0$, to minimize $E(f)$.
10. Given a noisy image $I: D \rightarrow \mathbb{R}$, we consider the following image denoising model to restore the original clean image $f: D \rightarrow \mathbb{R}$ that minimizes:

$$
E(f)=\int_{D}(f(x, y)-I(x, y))^{2} d x d y+\int_{D}|\nabla f(x, y)|^{2} d x d y
$$

where $|\nabla f(x, y)|^{2}=\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}$.
(a) Derive an iterative scheme, which updates f^{n} to f^{n+1} with time step $\tau>0$, to minimize $E(f)$. This is the same model as discussed in the lectures. Please show all your steps with details, including detailed explanations on why E is iteratively decreasing. Missing detailed steps will result in mark deductions.
(b) If E is modified to \widetilde{E} defined as follows:

$$
\widetilde{E}(f)=\int_{D} \sqrt{(f(x, y)-I(x, y))^{2}+\epsilon^{2}} d x d y+\int_{D} \sqrt{|\nabla f(x, y)|^{2}+\epsilon^{2}} d x d y
$$

where $\epsilon>0$ is a small parameter bigger than 0 . Derive an iterative scheme, which updates f^{n} to f^{n+1} with time step $\tau>0$, to minimize $\widetilde{E}(f)$. Please show all your steps with details, including detailed explanations on why \widetilde{E} is iteratively decreasing. Missing detailed steps will result in mark deductions.

