Math 3360: Mathematical Imaging

Assignment 5

1. Consider a periodically extended 4×4 image $I=(I(x, y))_{0 \leq x, y \leq 3}$ given by:

$$
I=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & b & 0 & 1 \\
a & 0 & 0 & 0 \\
0 & 0 & c & 1
\end{array}\right)
$$

Given that the discrete Laplacian ΔI of I is given by the formula:

$$
\Delta I(x, y)=-4 I(x, y)+I(x+1, y)+I(x-1, y)+I(x, y+1)+I(x, y-1) \text { for } 0 \leq x, y \leq 3
$$

We perform the Laplacian masking on I to get a sharpen image $I_{\text {sharp }}$. Suppose $I_{\text {sharp }}$ is given by

$$
I_{\text {sharp }}=\left(\begin{array}{cccc}
0 & 0 & 5 & -3 \\
-1 & -5 & -1 & 5 \\
5 & 0 & 0 & -3 \\
-2 & 0 & -2 & 5
\end{array}\right)
$$

Find a, b and c. (Hint: You may want to use the formula of Laplacian masking in the spatial domain: $I_{\text {sharp }}=I-\Delta I$.)
Solution: We have

$$
\Delta I=\left(\begin{array}{cccc}
0 & b+1 & c-4 & 3 \\
a+b+1 & -4 b & b+2 & -4 \\
-4 a & a+b & c & a+2 \\
a+1 & c & 2-4 c & c-4
\end{array}\right)
$$

and then

$$
I_{\text {sharp }}=I-\Delta I=\left(\begin{array}{cccc}
0 & -b-1 & -c+5 & -3 \\
-a-b-1 & 5 b & -b-2 & 5 \\
5 a & -a-b & -c & -a-2 \\
-a-1 & -c & 5 c-2 & 5-c
\end{array}\right)
$$

Therefore, it's clear that $a=1, b=-1$ and $c=0$.
2. Consider a 4×4 periodically extended image $I=(I(k, l))_{0 \leq k, l \leq 3}$ given by:

$$
I=\left(\begin{array}{cccc}
a & 0 & c & 0 \\
0 & b & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

where a, b and c are positive numbers.
We apply the 3×3 mean filter to I to obtain $I^{\text {mean }}$. Suppose $I^{\text {mean }}(0,3)=1, I^{\text {mean }}(1,2)=$ $8 / 9$ and $I^{\text {mean }}(1,0)=5 / 9$. Find a, b and c.
Solution: The information implies that

$$
\begin{aligned}
I^{\text {mean }}(0,3) & =\frac{1}{9}(a+c)=1 \\
I^{\text {mean }}(1,2) & =\frac{1}{9}(b+c)=\frac{8}{9} \\
I^{\text {mean }}(1,0) & =\frac{1}{9}(a+b)=\frac{5}{9}
\end{aligned}
$$

Therefore, we get $a=3, b=2$ and $c=6$.
3. Consider the following periodically extended 4×4 image $f=(f(x, y))_{0 \leq x, y \leq 3}$:

$$
f=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 4
\end{array}\right)
$$

(a) Consider the ideal low-pass filter $H_{L P}=\left(H_{L P}(x, y)\right)_{0 \leq x, y \leq 3}$ of radius 2. Explain with details why $H_{L P}$ is given by:

$$
H_{L P}=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1
\end{array}\right)
$$

(b) We apply the ideal low-pass filter of radius $2, H_{L P}$ to perform unsharp masking on f to get $f_{\text {sharp }}$. Find $f_{\text {sharp }}$. Please show all your steps.

Solution:

(a) Since the image f is taken from $0 \leq x, y \leq 3$, centralization is required. Let $N=4$ and $D_{0}=2$, the distance function $D(x, y)$ is given by

$$
D(x, y)=\sqrt{\tilde{x}^{2}+\tilde{y}^{2}}
$$

where $\tilde{x}=\left(x+\frac{N}{2}\right) \bmod N-\frac{N}{2}= \begin{cases}x & \text { if } 0 \leq x<N / 2 \\ N-x & \text { if } N / 2 \leq x<N\end{cases}$ and $\tilde{y}=\left(y+\frac{N}{2}\right) \bmod N-\frac{N}{2}\left\{\begin{array}{ll}y & \text { if } 0 \leq y<N / 2 \\ N-y & \text { if } N / 2 \leq y<N\end{array}\right.$. Hence

$$
H_{L P}=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1
\end{array}\right)
$$

(b) The DFT of f is

$$
\begin{aligned}
F & =D F T(f) \\
& =\frac{1}{16}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -j & -1 & j \\
1 & -1 & 1 & -1 \\
1 & j & -1 & -j
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 3 & 0 \\
0 & 0 & 0 & 4
\end{array}\right)\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -j & -1 & j \\
1 & -1 & 1 & -1 \\
1 & j & -1 & -j
\end{array}\right) \\
& =\frac{1}{8}\left(\begin{array}{cccc}
5 & -1+j & -1 & -1-j \\
-1+j & -1 & -1-j & 5 \\
-1 & -1-j & 5 & -1+j \\
-1-j & 5 & -1+j & -1
\end{array}\right) .
\end{aligned}
$$

Therefore,

$$
D F T\left(f_{\text {sharp }}\right)=\left(2-H_{L P}\right) \odot F=\frac{1}{8}\left(\begin{array}{cccc}
5 & -1+j & -1 & -1-j \\
-1+j & -1 & -2-2 j & 5 \\
-1 & -2-2 j & 10 & -2+2 j \\
-1-j & 5 & -2+2 j & -1
\end{array}\right)
$$

And thus

$$
\begin{aligned}
f_{\text {sharp }} & =\frac{1}{8}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & j & -1 & -j \\
1 & -1 & 1 & -1 \\
1 & -j & -1 & j
\end{array}\right)\left(\begin{array}{cccc}
5 & -1+j & -1 & -1-j \\
-1+j & -1 & -2-2 j & 5 \\
-1 & -2-2 j & 10 & -2+2 j \\
-1-j & 5 & -2+2 j & -1
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & j & -1 \\
-j \\
1 & -1 & 1 \\
-1 \\
1 & -j & -1
\end{array}\right) \\
& =\frac{1}{8}\left(\begin{array}{cccc}
9 & -1 & 5 & -5 \\
-1 & 17 & -5 & 5 \\
5 & -5 & 33 & -9 \\
-5 & 5 & -9 & 41
\end{array}\right) .
\end{aligned}
$$

4. Apply the following filters:
the 3×3 mean filter;
the 3×3 median filter;
convolution filter $\frac{1}{12}\left(\begin{array}{cccc}6 & 2 & 0 & 2 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right)$ where the indices are starting from 0 , on the following periodically extended 4×4 images:
(a) $\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right)$
(b) $\left(\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right)$
(c) $\left(\begin{array}{cccc}1 & 0 & 3 & -2 \\ 0 & -1 & 2 & 0 \\ 0 & 3 & 1 & 0 \\ -2 & 0 & 0 & 1\end{array}\right)$

Solution: Recall that the result g_{i} of the 3×3 mean filter applied on $f \in M_{M \times N}(\mathbb{R})$ is given by:

$$
g_{\mathrm{i}}(x, y)=\frac{1}{9} \sum_{k=-1}^{1} \sum_{l=-1}^{1} f(x+k, y+l)
$$

the result $g_{\text {ii }}$ of the 3×3 median filter applied on $f \in M_{M \times N}(\mathbb{R})$ is given by:

$$
g_{\mathrm{ii}}(x, y)=\operatorname{median}\{f(x+k, y+l): k, l \in\{-1,0,1\}\}
$$

the result $g_{\text {iii }}$ of the convolution filter applied on $f \in M_{4 \times 4}(\mathbb{R})$ is given by:

$$
g_{\mathrm{iii}}(x, y)=\frac{1}{2} f(x, y)+\frac{1}{6}[f(x+1, y)+f(x-1, y)]+\frac{1}{12}[f(x, y+1)+f(x, y-1)] .
$$

Hence the results from applying the filters on the given images are:
(a) i. $\frac{1}{9}\left(\begin{array}{llll}3 & 2 & 2 & 2 \\ 2 & 3 & 2 & 2 \\ 2 & 2 & 3 & 2 \\ 2 & 2 & 2 & 3\end{array}\right)$
ii. 0
iii. $\frac{1}{4}\left(\begin{array}{llll}2 & 1 & 0 & 1 \\ 1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 1 \\ 1 & 0 & 1 & 2\end{array}\right)$
(b) i. $\frac{1}{9}\left(\begin{array}{llll}5 & 4 & 5 & 4 \\ 4 & 5 & 4 & 5 \\ 5 & 4 & 5 & 4 \\ 4 & 5 & 4 & 5\end{array}\right)$
ii. $\left(\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right)$
iii. $\frac{1}{2}\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1\end{array}\right)$
(c) i. $\frac{1}{9}\left(\begin{array}{cccc}-3 & 3 & 3 & 3 \\ 1 & 9 & 6 & 5 \\ 1 & 3 & 6 & 2 \\ 1 & 6 & 6 & 2\end{array}\right)$
ii. $\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$
iii. $\frac{1}{12}\left(\begin{array}{cccc}0 & 7 & 16 & -2 \\ -1 & 1 & 14 & 2 \\ 4 & 19 & 14 & 3 \\ -9 & -1 & 6 & 0\end{array}\right)$
5. Consider an image denoising model to find $f:[a, b] \times[a, b] \rightarrow \mathbb{R}$ that minimizes:

$$
E(f)=\int_{a}^{b} \int_{a}^{b}(f(x, y)-g(x, y))^{2} d x d y+\int_{a}^{b} \int_{a}^{b} K(x, y)|\nabla f(x, y)|^{2} d x d y
$$

Assuming $f(x, y)=g(x, y)=0$ for (x, y) on the boundary of $[a, b] \times[a, b]$. Suppose f minimizes $E(f)$. Show that f satisfies:

$$
f(x, y)-g(x, y)-\nabla \cdot(K(x, y) \nabla f(x, y))=0 \text { in }[a, b] \times[a, b]
$$

Solution: Suppose f minimizes E. Let $D=[a, b] \times[a, b]$, then for any $\varphi: D \rightarrow \mathbb{R}$,

$$
\begin{aligned}
0= & \left.\frac{\partial}{\partial t}\right|_{t=0} E(f+t \varphi) \\
= & 2 \int_{D} \varphi(x, y)(f(x, y)-g(x, y))+\left.\int_{D} K(x, y) \frac{\partial}{\partial t}\right|_{t=0}\|\nabla(f+t \varphi)(x, y)\|^{2} \\
= & 2 \int_{D} \varphi(x, y)(f(x, y)-g(x, y)) \\
& +\left.\int_{D} K(x, y) \frac{\partial}{\partial t}\right|_{t=0}\left[\|\nabla f\|^{2}+2 t\langle\nabla f(x, y), \nabla \varphi(x, y)\rangle+t^{2}\|\nabla \varphi(x, y)\|^{2}\right] \\
= & 2 \int_{D}\{\varphi(x, y)(f(x, y)-g(x, y))+K(x, y)\langle\nabla f(x, y), \nabla \varphi(x, y)\rangle\} \\
= & 2 \int_{D} \varphi(x, y)(f(x, y)-g(x, y))+2 \int_{\partial D} \varphi(x, y) K(x, y)\langle\nabla f(x, y), \vec{n}(x, y)\rangle \\
& -2 \int_{D} \varphi(x, y) \nabla \cdot(K(x, y) \nabla f(x, y)) .
\end{aligned}
$$

Note that $f(x, y)=0$ on ∂D, so the second term vanishes. Hence

$$
0=\int_{D} \varphi(x, y)[f(x, y)-g(x, y)-\nabla \cdot(K(x, y) \nabla f(x, y))] .
$$

Since the equation holds for any φ, for all $(x, y) \in D$ we have

$$
f(x, y)-g(x, y)-\nabla \cdot(K(x, y) \nabla f(x, y))=0 .
$$

