Math 3360: Mathematical Imaging Assignment 4

Due: November 10 before 1159PM

Please give reasons in your solutions.

1. Consider a $2N \times 2N$ image $I = (I(m, n))_{-N \le m, n \le N-1}$. The Butterworth high-pass filter H of squared radius D_0 and order n is applied on $DFT(I) = (\hat{I}(u, v))_{-N \le u, v \le N-1}$ to give G(u, v). Suppose $\hat{I}(1, 1) \ne 0$ and $\hat{I}(2, 2) \ne 0$, and

$$G(1,1) = \frac{1}{37}\hat{I}(1,1)$$
 and $G(2,2) = \frac{1}{10}\hat{I}(2,2).$

Find D_0 and n.

- 2. (a) Consider a $(2M + 1) \times (2N + 1)$ image $I = (I(m, n))_{0 \le m \le 2M, 0 \le n \le 2N}$, where M, N > 200. The Gaussian high-pass filter with standard deviation σ is applied to $DFT(I) = (\hat{I}(u, v))_{0 \le m \le 2M, 0 \le n \le 2N}$. Suppose $H(2, 2) = \frac{1}{MN}$. Find σ^2 .
 - (b) Consider a Gaussian low-pass filter

$$H(u,v) = exp\left(-\frac{u^2 + v^2}{2\sigma^2}\right).$$

Suppose $H(4,2) = \frac{1}{\sqrt{e}}H(1,-3)$. Find σ^2 .

3. Suppose $g \in M_{N \times N}(\mathbb{R})$ is a blurred image capturing a static scene. Assume that g is given by:

$$g(i,j) = \frac{1}{\lambda} \sum_{k=0}^{\lambda-1} f(i-k,j) \text{ for } 0 \le i,j \le N-1,$$

where $\lambda \in \mathbb{N} \cap [1, N]$ and f is the underlying image (periodically extended). Show that DFT(g)(u, v) = H(u, v)DFT(f)(u, v) for all $0 \le u, v \le N - 1$, where H(u, v) is the degradation function in the frequency domain given by:

$$H(u,v) = \begin{cases} \frac{1}{\lambda} \frac{\sin \frac{\lambda \pi u}{N}}{\sin \frac{\pi u}{N}} e^{-\pi j \frac{(\lambda-1)u}{N}} & \text{if } u \neq 0, \\ 1 & \text{if } u = 0. \end{cases}$$

4. Consider a 4×4 periodically extended image $I = (I(k, l))_{0 \le k, l \le 3}$ given by:

where $a, b, c \ge 0$.

Consider the modified direct filter T_1 with squared radius a and order b, which is defined by

_ /

$$T_1(u, v) = \frac{B(u, v)}{H_1(u, v) + \epsilon \cdot sgn(H_1(u, v))}$$

Consider the constrained least square filter T_2 with parameter c, which is defined by

Let $I_2(u, v) = T_2(u, v)DFT(I)(u, v)$ Suppose $DFT(I)(0,0) = \frac{1}{2}$; $T_1(0,2) = \frac{8}{17}$; $DFT(I)(1,1) \neq 0$ and $I_2(1,1) = \frac{3j}{73}DFT(I)(1,1)$. Find a, b, c. (Here, $j = \sqrt{-1}$.)

- 5. The constrained least square filtering aims to find a vectorized image \vec{f} of a $N \times N$ image f that minimizes: $E(\vec{f}) = (L\vec{f})^T (L\vec{f})$ subject to the constraint: $[\vec{g} - H\vec{f}]^T [\vec{g} - H\vec{f}] = \epsilon$, for some block-circulant matrices H and $L.~\epsilon$ is a fixed parameter greater than 0.
 - (a) Let $W = W_2 \otimes W_2$, where $W_2(k,n) = \frac{1}{\sqrt{2}}e^{\pi j k n}$ for $0 \le k, n \le 1$ and \otimes is the Kronecker product. Given that $H = W \Lambda_H W^{-1}$ and $L = W \Lambda_L W^{-1}$, where

$$\Lambda_H = \begin{pmatrix} h_0 & 0 & 0 & 0 \\ 0 & h_1 & 0 & 0 \\ 0 & 0 & h_2 & 0 \\ 0 & 0 & 0 & h_3 \end{pmatrix} \text{ and } \Lambda_L = \begin{pmatrix} l_0 & 0 & 0 & 0 \\ 0 & l_1 & 0 & 0 \\ 0 & 0 & l_2 & 0 \\ 0 & 0 & 0 & l_3 \end{pmatrix}.$$

where $h_i, l_i \in \mathbb{R}^+, 0 \le i \le 3$

W

Let $\vec{g} = \mathcal{S}(g)$, where g is a 2 × 2 image and \mathcal{S} is the stacking operator.

- i. Show that H is block-circulant
- ii. Show that $W^{-1}\mathcal{S}(h) = 2\mathcal{S}(\hat{h})$ for any 2×2 image h.
- (b) Show that the optimal solution $\vec{f} = \mathcal{S}(f)$ that solves the constrained least square problem satisfies $[\lambda H^T H + L^T L]\vec{f} = \lambda H^T \vec{g}$ for some parameter λ . Hence, find DFT(f) in term of DFT(g), $h_i, l_i, 0 \le i \le 3$ and λ . You may assume $\lambda > 0$. Please show your answer with details.