Math 3360: Mathematical Imaging

Assignment 4

Due: November 10 before 1159PM

Please give reasons in your solutions.

1. Consider a $2 N \times 2 N$ image $I=(I(m, n))_{-N \leq m, n \leq N-1}$. The Butterworth high-pass filter H of squared radius D_{0} and order n is applied on $\operatorname{DFT}(I)=(\hat{I}(u, v))_{-N \leq u, v \leq N-1}$ to give $G(u, v)$. Suppose $\hat{I}(1,1) \neq 0$ and $\hat{I}(2,2) \neq 0$, and

$$
G(1,1)=\frac{1}{37} \hat{I}(1,1) \text { and } G(2,2)=\frac{1}{10} \hat{I}(2,2)
$$

Find D_{0} and n.
2. (a) Consider a $(2 M+1) \times(2 N+1)$ image $I=(I(m, n))_{0 \leq m \leq 2 M, 0 \leq n \leq 2 N}$, where $M, N>$ 200. The Gaussian high-pass filter with standard deviation σ is applied to $\operatorname{DFT}(I)=$ $(\hat{I}(u, v))_{0 \leq m \leq 2 M, 0 \leq n \leq 2 N}$. Suppose $H(2,2)=\frac{1}{M N}$. Find σ^{2}.
(b) Consider a Gaussian low-pass filter

$$
H(u, v)=\exp \left(-\frac{u^{2}+v^{2}}{2 \sigma^{2}}\right)
$$

Suppose $H(4,2)=\frac{1}{\sqrt{e}} H(1,-3)$. Find σ^{2}.
3. Suppose $g \in M_{N \times N}(\mathbb{R})$ is a blurred image capturing a static scene. Assume that g is given by:

$$
g(i, j)=\frac{1}{\lambda} \sum_{k=0}^{\lambda-1} f(i-k, j) \text { for } 0 \leq i, j \leq N-1
$$

where $\lambda \in \mathbb{N} \cap[1, N]$ and f is the underlying image (periodically extended). Show that $\operatorname{DFT}(g)(u, v)=H(u, v) D F T(f)(u, v)$ for all $0 \leq u, v \leq N-1$, where $H(u, v)$ is the degradation function in the frequency domain given by:

$$
H(u, v)= \begin{cases}\frac{1}{\lambda} \frac{\sin \frac{\lambda \pi u}{\sin \frac{\pi u}{N}} e^{-\pi j \frac{(\lambda-1) u}{N}}}{} \begin{array}{l}
\text { if } u \neq 0 \\
1
\end{array} & \text { if } u=0\end{cases}
$$

4. Consider a 4×4 periodically extended image $I=(I(k, l))_{0 \leq k, l \leq 3}$ given by:

$$
I=\left(\begin{array}{cccc}
a & a-2 c & 0 & 0 \\
b-2 c & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & b
\end{array}\right)
$$

where $a, b, c \geq 0$.
Consider the modified direct filter T_{1} with squared radius a and order b, which is defined by

$$
T_{1}(u, v)=\frac{B(u, v)}{H_{1}(u, v)+\epsilon \cdot \operatorname{sgn}\left(H_{1}(u, v)\right)}
$$

where $B(u, v)=\frac{1}{1+\left(\frac{u^{2}+v^{2}}{a}\right)^{b}}, \epsilon=1$ and $H_{1}(u, v)=D F T\left(h_{1}\right)(u, v)$ with h_{1} being a bluring convolution kernel $\left(\begin{array}{cccc}1 / 2 & 0 & 0 & 0 \\ 1 / 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$.

Consider the constrained least square filter T_{2} with parameter c, which is defined by

$$
T_{2}(u, v)=\frac{1}{N^{2}} \frac{\overline{H_{2}(u, v)}}{\left|H_{2}(u, v)\right|^{2}+c|P(u, v)|^{2}}
$$

where $H_{2}=D F T\left(h_{2}\right)$ with h_{2} being the convolution kernel $\left(\begin{array}{cccc}1 / 3 & 1 / 3 & 1 / 3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$. and $P=\operatorname{DFT}(\tilde{h})$ with \tilde{h} being the convolution kernel $\left(\begin{array}{cccc}-4 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0\end{array}\right)$.

Let $I_{2}(u, v)=T_{2}(u, v) \operatorname{DFT}(I)(u, v)$
Suppose $\operatorname{DFT}(I)(0,0)=\frac{1}{2} ; T_{1}(0,2)=\frac{8}{17} ; \operatorname{DFT}(I)(1,1) \neq 0$ and $I_{2}(1,1)=\frac{3 j}{73} \operatorname{DFT}(I)(1,1)$. Find a, b, c. (Here, $j=\sqrt{-1}$.)
5. The constrained least square filtering aims to find a vectorized image \vec{f} of a $N \times N$ image f that minimizes: $E(\vec{f})=(L \vec{f})^{T}(L \vec{f})$ subject to the constraint: $[\vec{g}-H \vec{f}]^{T}[\vec{g}-H \vec{f}]=\epsilon$, for some block-circulant matrices H and $L . \epsilon$ is a fixed parameter greater than 0 .
(a) Let $W=W_{2} \otimes W_{2}$, where $W_{2}(k, n)=\frac{1}{\sqrt{2}} e^{\pi j k n}$ for $0 \leq k, n \leq 1$ and \otimes is the Kronecker product. Given that $H=W \Lambda_{H} W^{-1}$ and $L=W \Lambda_{L} W^{-1}$, where

$$
\Lambda_{H}=\left(\begin{array}{cccc}
h_{0} & 0 & 0 & 0 \\
0 & h_{1} & 0 & 0 \\
0 & 0 & h_{2} & 0 \\
0 & 0 & 0 & h_{3}
\end{array}\right) \text { and } \Lambda_{L}=\left(\begin{array}{cccc}
l_{0} & 0 & 0 & 0 \\
0 & l_{1} & 0 & 0 \\
0 & 0 & l_{2} & 0 \\
0 & 0 & 0 & l_{3}
\end{array}\right)
$$

where $h_{i}, l_{i} \in \mathbb{R}^{+}, 0 \leq i \leq 3$
Let $\vec{g}=\mathcal{S}(g)$, where g is a 2×2 image and \mathcal{S} is the stacking operator.
i. Show that H is block-circulant
ii. Show that $W^{-1} \mathcal{S}(h)=2 \mathcal{S}(\hat{h})$ for any 2×2 image h.
(b) Show that the optimal solution $\vec{f}=\mathcal{S}(f)$ that solves the constrained least square problem satisfies $\left[\lambda H^{T} H+L^{T} L\right] \vec{f}=\lambda H^{T} \vec{g}$ for some parameter λ. Hence, find $D F T(f)$ in term of $\operatorname{DFT}(g), h_{i}, l_{i}, 0 \leq i \leq 3$ and λ. You may assume $\lambda>0$. Please show your answer with details.

