
MATH3290 Mathematical Modeling 2023/2024
Assignment 3

Suggested Solutions

1. (a) The equilibrium points occur when dP/dt = dQ/dt = 0. It is clear that
dP/dt = 0 if and only if P = 0 or P = b/Q, and dQ/dt = 0 if and only if
Q = 0 or Q = fP . Since dP/dt is not well defined when Q = 0, it is clear
that the only equilibrium points occurs when P = b/Q and Q = fP . These
conditions imply

P =
b

fP
=⇒ P 2 =

b

f
=⇒ P = ±

√
b

f
(1)

Since P is positive, we must reject P = −
√

b/f . It follows the only equilibrium

point in this case is (P,Q) = (
√
b/f,

√
bf).

(b) By substituting the given values, it follows the equilibrium point is (P,Q) =
(
√

2000/3,
√
600000) ≈ (25.82, 774.60).

(c) By considering the signs of dP/dt and dQ/dt in each region, which are divided
by the curves Q = fP and P = bQ, we arrive at the following phase plane:

Q Q = fP

P = b/Q

P

Note that the intersection of the curves is the equilibrium point found in part
(a). We cannot determine if the equilibrium point is stable, as the phase lines
rotate around the equilibrium point (i.e. we cannot determine if solutions while
spiral outward, inward, or stay periodic around the equilibrium point).
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2. (a) The differential equation can be solved using separation of variables. We have
that

dP

P (M − P )(P −m)
= rdt (2)

Partial fraction decomposition yields

1

P (M − P )(P −m)
=

1

M −m

(
1

P (P −m)
+

1

P (M − P )

)
(3)

We can further see that

1

P (P −m)
=

1

m

(
1

P −m
− 1

P

)
;

1

P (M − P )
=

1

M

(
1

P
+

1

M − P

)
(4)

Hence, substituting into (2) we have

1

m(M −m)

∫
1

P −m
− 1

P
dP+

1

M(M −m)

∫
1

P
+

1

M − P
dP =

∫
r dt (5)

After integrating, we see that we have

ln |P −m| − lnP

m(M −m)
+

lnP − ln |M − P |
M(M −m)

= rt+ C (6)

Note that the absolute value is omitted for the lnP terms as P must be positive.
We may also rewrite as

Pm−M |P −m|M |M − P |−m = AeMmr(M−m)T (7)

(where A is a constant) for simplicity.

(b) By considering the differential equation, we see that dP/dt < 0 in this case.
Hence, P must approach M as t → ∞.

(c) Similar to part (b), we can split into two cases. If m < P < M then dP/dt > 0
and P approaches M . If P < m then dP/dt < 0 and P approaches 0.

(d) The equilibrium points are P = 0,m,M . The steady state value depends on
the initial value in the following way, which was proved in the previous parts:
If P0 ≥ m, then P → M ; if P0 < m, then P → 0.
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3. (a) Let us consider the system as a whole. There is no net force in the system as
the force applied on the rocket is of equal and opposite magnitude to the force
applied on the propellant mass. The total change in momentum in a small
time ∆t is given by (m−∆mp)(v+∆v)− (∆mp)u−mv (as u is of the opposite
direction to v). Hence, dividing by ∆t, ignoring the ∆mp∆v term as it is of
higher order, and taking ∆t → 0 yields

d

dt
(momentum) = −v

dmp

dt
+m

dv

dt
− u

dmp

dt
(8)

By the discussion about the net force, the above quantity is equal to 0. Mo-
roever, dmp/dt = −dm/dt, so

0 = c
dm

dt
+m

dv

dt
(9)

Rearranging yields

dv

dt
= − c

m

dm

dt
(10)

as required.

(b) Multiplying both side by dt/dm (this is justified as dm/dt is non-zero) yields

dv

dm
=

−c

m
(11)

Separation of variables directly yields

lnm = −1

c
v + C (12)

We are given that at t = 0, v = 0 and m = M + P . Hence, C = ln(M + P ) and we
have that

v = −c lnm− ln(M + P ) = −c ln

[
m

M + P

]
(13)

as required.

(c) The case where all fuel is burned corresponds to when m = (1 − ε)M + P . Then,
we have that

vf = −c ln

[
(1− ε)M + P

M + P

]
= −c ln

[
1− εM

M + P

]
= −c ln

[
1− 1

1 + β

]
(14)

(d) Plugging the values into part (c) we see that vf ≈ 4.71 km/s.


