MATH3290 Mathematical Modeling 2023/2024 Assignment 1 Due Date: 5pm, February 20th

Note: Submit your assignment via Blackboard. Late submissions are not allowed.

1. Consider the data sets in Table 1

x	1	2	3	4	5	6	7
y_1	7	15	33	61	99	147	205
y_2	4.5	20	90	403	$1,\!808$	8,130	$36,\!316$

Table 1: Data set for Problem 1.

- (a) For (x, y_1) , construct a divided difference table. What conclusions can you make about y_1 ? Would you use a low-order polynomial as an empirical model? If so, what order?
- (b) For (x, y_2) , construct a divided difference table. Would you use a low-order polynomial as an empirical model? If not, give the reason.
- 2. The following data were obtained for the growth of a sheep population introduced into a new environment on the island of Tasmania.

t(year)	1814	1824	1834	1844	1854	1864
p(population)	125	275	830	1200	1750	1650

Table 2: Data set for Problem 2.

- (a) Plot the change in population versus year. Is there a trend?
- (b) Formulate a discrete dynamical system model. Use the least-squares criterion to find the model parameter.
- (c) Predict the sheep population in the year 1869.
- 3. (Markov process) A certain protein molecule can have three configurations which are denoted as C_1 , C_2 and C_3 . Every second, a protein molecule can make a transition from one configuration to another configuration with the following probabilities:

$P(C_1 \to C_1) = 0.3$	$P(C_1 \to C_2) = 0.2$	$P(C_1 \to C_3) = 0.5$
$P(C_2 \to C_1) = 0.3$	$P(C_2 \to C_2) = 0.5$	$P(C_2 \to C_3) = 0.2$
$P(C_3 \to C_1) = 0.4$	$P(C_3 \to C_2) = 0.2$	$P(C_3 \to C_1) = 0.4$

The configuration transition are demonstrated in Figure 1. (For example, the molecule will transit from C_1 to C_2 with probability 0.2.)

Consider a living body with a fixed number of protein molecules. We let C_i^n (i = 1, 2, 3; n = 0, 1, 2, ...) be the percentage of molecules that are in configuration C_i (i = 1, 2, 3) at the end of the *n*-th second.

Figure 1: An illustration of the configuration transition process for Problem 3.

- (a) Formulate a model for C_i^n using a system of difference equations.
- (b) Find the equilibrium point, and determine its stability.
- (c) Consider the three initial conditions in Table 3. Compute C_1^5, C_2^5, C_3^5 for each case. Does the long term behaviour sensitive to the initial condition?

Percentage	C_{1}^{0}	C_2^0	C_3^0
Case A	0	0	1
Case B	0	0.5	0.5
Case C	0.2	0.2	0.6

Table 3: Data set for Problem 3.