MATH3290 Mathematical Modeling 2023/2024
 Assignment 1
 Due Date: 5pm, February 20th

Note: Submit your assignment via Blackboard. Late submissions are not allowed.

1. Consider the data sets in Table 1

x	1	2	3	4	5	6	7
y_{1}	7	15	33	61	99	147	205
y_{2}	4.5	20	90	403	1,808	8,130	36,316

Table 1: Data set for Problem 1.
(a) For $\left(x, y_{1}\right)$, construct a divided difference table. What conclusions can you make about y_{1} ? Would you use a low-order polynomial as an empirical model? If so, what order?
(b) For $\left(x, y_{2}\right)$, construct a divided difference table. Would you use a low-order polynomial as an empirical model? If not, give the reason.
2. The following data were obtained for the growth of a sheep population introduced into a new environment on the island of Tasmania.

t (year)	1814	1824	1834	1844	1854	1864
$p($ population $)$	125	275	830	1200	1750	1650

Table 2: Data set for Problem 2.
(a) Plot the change in population versus year. Is there a trend?
(b) Formulate a discrete dynamical system model. Use the least-squares criterion to find the model parameter.
(c) Predict the sheep population in the year 1869 .
3. (Markov process) A certain protein molecule can have three configurations which are denoted as C_{1}, C_{2} and C_{3}. Every second, a protein molecule can make a transition from one configuration to another configuration with the following probabilities:

$$
\begin{array}{lll}
P\left(C_{1} \rightarrow C_{1}\right)=0.3 & P\left(C_{1} \rightarrow C_{2}\right)=0.2 & P\left(C_{1} \rightarrow C_{3}\right)=0.5 \\
P\left(C_{2} \rightarrow C_{1}\right)=0.3 & P\left(C_{2} \rightarrow C_{2}\right)=0.5 & P\left(C_{2} \rightarrow C_{3}\right)=0.2 \\
P\left(C_{3} \rightarrow C_{1}\right)=0.4 & P\left(C_{3} \rightarrow C_{2}\right)=0.2 & P\left(C_{3} \rightarrow C_{1}\right)=0.4
\end{array}
$$

The configuration transition are demonstrated in Figure 1. (For example, the molecule will transit from C_{1} to C_{2} with probability 0.2 .)
Consider a living body with a fixed number of protein molecules. We let $C_{i}^{n}(i=1,2,3 ; n=$ $0,1,2, \ldots)$ be the percentage of molecules that are in configuration $C_{i}(i=1,2,3)$ at the end of the n-th second.

Figure 1: An illustration of the configuration transition process for Problem 3.
(a) Formulate a model for C_{i}^{n} using a system of difference equations.
(b) Find the equilibrium point, and determine its stability.
(c) Consider the three initial conditions in Table 3. Compute $C_{1}^{5}, C_{2}^{5}, C_{3}^{5}$ for each case. Does the long term behaviour sensitive to the initial condition?

Percentage	C_{1}^{0}	C_{2}^{0}	C_{3}^{0}
Case A	0	0	1
Case B	0	0.5	0.5
Case C	0.2	0.2	0.6

Table 3: Data set for Problem 3.

