

# MATH 3290 Mathematical Modeling

Chapter 4: Experimental Modeling

Kuang HUANG February 1, 2024

Department of Mathematics The Chinese University of Hong Kong

# https://www.math.cuhk.edu.hk/course/2324/math3290



# About assignments

- The assignments will be posted on Blackboard next week.
- The first assignment is due by 5pm, Feb. 20.
- Writing everything with **MEX** if you major in science.
- You may also submit scanned assignments to Blackboard.



Use your phone with scanner apps such as





 $\Rightarrow$ 

Simple Scan - PDF Scanner App Chierse New

We will construct empirical models based on the given data.

In Chap. 3, we construct a model by first assuming a particular type of functions, and then fit the model to the data.

**Key assumption:** we need to have some knowledge about what types of models are suitable.

In this chapter, we will construct empirical models:

- We do not assume that the model functions belong to a certain type.
- The model is determined solely by the data.

Given a set of data points  $(x_i, y_i)$ , our goal is to fit them to a model.

Q: how do we determine a suitable model function?



Main idea:

- Select functions f(x) and g(y) (e.g. the Tukey ladder of powers  $x^2$ , x,  $\sqrt{x}$ ,  $\ln(x)$ ,  $1/\sqrt{x}$ , 1/x,  $1/x^2$ ,...,);
- plot  $g(y_i)$  vs  $f(x_i)$ ;
- look for a linear relationship;
- use the model function g(y) = af(x) + b, determine a and b;
- if not, try other f(x) and g(y).

#### Consider the data set.

| Year | Bluefish (lb) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1940 | 15,000        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1945 | 150,000       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1950 | 250,000       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1955 | 275,000       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1960 | 270,000       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1965 | 280,000       | The Manual Contraction of the Co |
| 1970 | 290,000       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1975 | 650,000       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1980 | 1,200,000     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1985 | 1,500,000     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1990 | 2,750,000     | Bluefish                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

#### **Remark:** we can change the unit of y from lb to $10^4$ lb.

#### Consider the data set.

| Year                                                         | Bluefish (lb)                                                                             |                                                                                                                        |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Year<br>1940<br>1945<br>1950<br>1955<br>1960<br>1965<br>1970 | Bluefish (Ib)<br>15,000<br>150,000<br>250,000<br>275,000<br>270,000<br>280,000<br>200,000 | <ul> <li>We take f(x) = x and consider 4 cases</li> <li>g(y) = y,</li> <li>g(y) = 1/√y,</li> <li>g(y) = √y,</li> </ul> |
| 1970<br>1975<br>1980<br>1985<br>1990                         | 290,000<br>650,000<br>1,200,000<br>1,500,000<br>2,750,000                                 | • $g(y) = \ln(y)$ .<br>We plot $g(y_i)$ vs $f(x_i)$ .                                                                  |

**Remark:** we can change the unit of y from lb to  $10^4$  lb.



g(y) = y

 $g(y) = 1/\sqrt{y}$ 



#### Hence, we will fit the model function

$$\sqrt{y} = ax + b$$

to the given data.

We let  $\tilde{y} = \sqrt{y}$ .

From Chap. 3, we need to solve

$$a\left(\sum_{i=1}^{m} x_i^2\right) + b\left(\sum_{i=1}^{m} x_i\right) = \sum_{i=1}^{m} x_i \tilde{y}_i,$$
  
$$a\left(\sum_{i=1}^{m} x_i\right) + b\left(\sum_{i=1}^{m} 1\right) = \sum_{i=1}^{m} \tilde{y}_i.$$

Using the data set

$$\sum_{i=1}^{m} x_i^2 = 385, \quad \sum_{i=1}^{m} x_i = 55, \quad \sum_{i=1}^{m} 1 = 11,$$
$$\sum_{i=1}^{m} x_i \tilde{y}_i = 529.28, \quad \sum_{i=1}^{m} \tilde{y}_i = 79.06.$$

The linear system is

385a + 55b = 529.28, 55a + 11b = 79.06.

Solving it, we have a = 1.21 and b = 1.09.

The model is  $\tilde{y} = 1.21x + 1.09$ .

Therefore, we have  $y = (1.21x + 1.09)^2$ .



The given data set

For example, one can predict the bluefish population in 1995.

Let x = 11. Then y = 210.11. The bluefish population is 2,101,100lb.

Assume you measure the temperature *Y* of a rod at various locations *X*, and obtain the following data.

| Observation |         |         |
|-------------|---------|---------|
| number      | X       | Y       |
| 1           | 35.97   | 0.241   |
| 2           | 67.21   | 0.615   |
| 3           | 92.96   | 1.000   |
| 4           | 141.70  | 1.881   |
| 5           | 483.70  | 11.860  |
| 6           | 886.70  | 29.460  |
| 7           | 1783.00 | 84.020  |
| 8           | 2794.00 | 164.800 |
| 9           | 3666.00 | 248.400 |

Consider 4 cases: 1. f(x) = x, g(y) = y; 2.  $f(x) = \sqrt{x}, g(y) = \sqrt{y}$ ; 3.  $f(x) = \ln(x), g(y) = \sqrt{y}$ ; 4.  $f(x) = \ln(x), g(y) = \ln(y)$ . We plot  $g(y_i)$  vs  $f(x_i)$ .



Hence, we will fit the model function

 $\ln(y) = a \ln(x) + b$ 

to the given data.

We let  $\tilde{x} = \ln(x)$  and  $\tilde{y} = \ln(y)$ .

From Chap. 3, we need to solve

$$a\left(\sum_{i=1}^{m} \tilde{x}_{i}^{2}\right) + b\left(\sum_{i=1}^{m} \tilde{x}_{i}\right) = \sum_{i=1}^{m} \tilde{x}_{i} \tilde{y}_{i},$$
$$a\left(\sum_{i=1}^{m} \tilde{x}_{i}\right) + b\left(\sum_{i=1}^{m} 1\right) = \sum_{i=1}^{m} \tilde{y}_{i}.$$

Using the data set

$$\sum_{i=1}^{m} \tilde{x}_{i}^{2} = 346.26, \quad \sum_{i=1}^{m} \tilde{x}_{i} = 53.87, \quad \sum_{i=1}^{m} 1 = 9,$$
$$\sum_{i=1}^{m} \tilde{x}_{i} \tilde{y}_{i} = 153.18, \quad \sum_{i=1}^{m} \tilde{y}_{i} = 19.63.$$

The linear system is

346.26a + 53.87b = 153.18, 53.87a + 9b = 19.63.

Solving it, we have a = 1.500 and b = -6.798. The model is  $\tilde{y} = 1.500\tilde{x} - 6.798$ . Therefore, we have  $\ln(y) = 1.500 \ln(x) - 6.798$ . That is  $y = e^{-6.798} x^{1.500}$ .

| number | X       | Y       | 2 | 50  |     |     |   |      |    |      | $\neq$ |
|--------|---------|---------|---|-----|-----|-----|---|------|----|------|--------|
|        |         |         |   |     |     |     |   |      |    | /    |        |
| 1      | 35.97   | 0.241   | 2 | 00  |     |     |   |      |    |      |        |
| 2      | 67.21   | 0.615   |   |     |     |     |   |      |    |      |        |
| 3      | 92.96   | 1.000   | 1 | 50  |     |     |   |      | -/ | ·    |        |
| 4      | 141.70  | 1.881   |   |     |     |     |   |      |    |      |        |
| 5      | 483.70  | 11.860  | 1 | 00  |     |     |   | _/   | ·  |      |        |
| 6      | 886.70  | 29.460  |   |     |     |     |   |      |    |      |        |
| 7      | 1783.00 | 84.020  |   | 50  |     |     | / |      |    |      |        |
| 8      | 2794.00 | 164.800 |   |     |     | ~   |   |      |    |      |        |
| 9      | 3666.00 | 248.400 |   | 0 * | *** |     |   |      |    |      |        |
|        |         |         |   | 0   |     | 100 | 0 | 2000 |    | 3000 | 4      |

The model function

For example, one can predict the temperature at position X = 3000. Let x = 3000.00. Then y = 183.470. Temperature Y = 183.470.

# Facts about one-term models



The Tukey ladder of powers

- Note that functions in the Tukey ladder of powers are all increasing or decreasing.
- Then  $y = g^{-1}(af(x) + b)$  is either increasing or decreasing.
- One-term models are not suitable for non-monotonic data patterns.

- A disadvantage of one-term models: too simple to capture complicated trend in the data.
- In this part, we consider high-order polynomial models.
- We obtain a function that goes through all data points.
- Advantages of high-order polynomials: easy to differentiate and integrate.
- E.g. one can find the maximum temperature (differentiation).
- E.g. one can find the distance from the speed (integration).

# Example: elapsed time of a tape recorder

We collected data relating the counter *c* on a tape recorder with its elapsed playing time *t*.

| $c_i$       | 100 | 200 | 300 | 400 | 500  | 600  | 700  | 800  |
|-------------|-----|-----|-----|-----|------|------|------|------|
| $t_i$ (sec) | 205 | 430 | 677 | 945 | 1233 | 1542 | 1872 | 2224 |



We collected data relating the counter *c* on a tape recorder with its elapsed playing time *t*.

| $c_i$       | 100 | 200 | 300 | 400 | 500  | 600  | 700  | 800  |
|-------------|-----|-----|-----|-----|------|------|------|------|
| $t_i$ (sec) | 205 | 430 | 677 | 945 | 1233 | 1542 | 1872 | 2224 |

We construct an empirical model using a high-order polynomial. Moreover, note that *c* is the independent variable.

We will find a 7-th order polynomial, denoted  $P_7(c)$ , passing through all data points.

$$P_7(c) = a_0 + a_1c + a_2c^2 + a_3c^3 + a_4c^4 + a_5c^5 + a_6c^6 + a_7c^7$$

#### Recall, we have the data set:

| $c_i$       | 100 | 200 | 300 | 400 | 500  | 600  | 700  | 800  |
|-------------|-----|-----|-----|-----|------|------|------|------|
| $t_i$ (sec) | 205 | 430 | 677 | 945 | 1233 | 1542 | 1872 | 2224 |

We need that  $P_7(c)$  goes through all data points:

$$\begin{array}{l} 205 = a_0 + 1a_1 + 1^2a_2 + 1^3a_3 + 1^4a_4 + 1^5a_5 + 1^6a_6 + 1^7a_7 \\ 430 = a_0 + 2a_1 + 2^2a_2 + 2^3a_3 + 2^4a_4 + 2^5a_5 + 2^6a_6 + 2^7a_7 \\ \vdots \\ 2224 = a_0 + 8a_1 + 8^2a_2 + 8^3a_3 + 8^4a_4 + 8^5a_5 + 8^6a_6 + 8^7a_7 \end{array}$$

#### Note:

- We change the unit of *c*.
- We obtain a system of 8 linear equations.
- This is the so-called Vandermonde system.

#### Solving the above linear system:

$$\begin{array}{ll} a_0 = -13.9999923 & a_4 = -5.354166491 \\ a_1 = 232.9119031 & a_5 = 0.8013888621 \\ a_2 = -29.08333188 & a_6 = -0.0624999978 \\ a_3 = 19.78472156 & a_7 = 0.0019841269 \end{array}$$

The following plot is about  $P_7(c)$  and the data.



# Lagrangian form of polynomial

Given a set of (n + 1) data points  $(x_i, y_i)$ , i = 0, 1, 2, ..., n, we need to find a polynomial P(x) of degree n passing through all data points. It is difficult to solve a large linear system of  $(n + 1) \times (n + 1)$ . We can conveniently find P(x) using Lagrangian bases:

$$L_k(x) = \prod_{i=0, i\neq k}^n \frac{x-x_i}{x_k-x_i}.$$

The P(x) can be written as

$$P(x) = y_0 L_0(x) + y_1 L_1(x) + \cdots + y_n L_n(x).$$

#### Note:

$$L_k(x_k) = 1, \qquad L_k(x_j) = 0, \ j \neq k.$$

Consider the data set (there are 4 data points):

| x | <i>x</i> <sub>1</sub> | $x_2$      | <i>x</i> <sub>3</sub> | <i>x</i> <sub>4</sub> |
|---|-----------------------|------------|-----------------------|-----------------------|
| y | <i>y</i> 1            | <i>y</i> 2 | Уз                    | <i>y</i> 4            |

We need to find a 3-rd order polynomial.

Using the above Lagrangian bases, we have

$$P_{3}(x) = \frac{(x-x_{2})(x-x_{3})(x-x_{4})}{(x_{1}-x_{2})(x_{1}-x_{3})(x_{1}-x_{4})}y_{1} + \frac{(x-x_{1})(x-x_{3})(x-x_{4})}{(x_{2}-x_{1})(x_{2}-x_{3})(x_{2}-x_{4})}y_{2} + \frac{(x-x_{1})(x-x_{2})(x-x_{4})}{(x_{3}-x_{1})(x_{3}-x_{2})(x_{3}-x_{4})}y_{3} + \frac{(x-x_{1})(x-x_{2})(x-x_{3})}{(x_{4}-x_{1})(x_{4}-x_{2})(x_{4}-x_{3})}y_{4}$$

Constructing an empirical model by a high-order polynomial— Advantages:

- is "usually" easy to write down (using Lagrangian bases),
- has a better ability to capture complicated trends (cf. one-term models),
- can be differentiated and integrated easily.

However, it may—

#### Disadvantages:

- contain too many oscillations (see Example 1),
- be very sensitive to errors in the data (see Example 2).



The data suggests that, the model function should be an increasing function.

Assume that we construct a 6-th order polynomial model. We get (using, for example, the Lagrangian bases)

$$y = -0.0138x^{6} + 0.5084x^{5} - 6.4279x^{4} + 34.8575x^{3}$$
$$-73.9916x^{2} + 64.3128x - 18.0951.$$

Note that, the function changes from increasing to decreasing.

Therefore, this model function may not give good predictions.



#### Consider the data set:

| Xi                     | 0.2    | 0.3    | 0.4    | 0.6    | 0.9    |
|------------------------|--------|--------|--------|--------|--------|
| Case 1: y <sub>i</sub> | 2.7536 | 3.2411 | 3.8016 | 5.1536 | 7.8671 |
| Case 2: y <sub>i</sub> | 2.7536 | 3.2411 | 3.8916 | 5.1536 | 7.8671 |

We consider fitting the data by a 4-th order polynomial:

$$P_4(x) = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4.$$

We assume that Case 1 gives the exact data.

In Case 2, we assume there is a measurement error at  $x_i = 0.4$ .

The results are shown in the following table.

|        | <i>a</i> <sub>0</sub> | <i>a</i> <sub>1</sub> | a2      | a3       | <i>a</i> <sub>4</sub> |
|--------|-----------------------|-----------------------|---------|----------|-----------------------|
| Case 1 | 2                     | 3                     | 4       | -1       | 1                     |
| Case 2 | 3.4580                | -13.2000              | 64.7500 | -91.0000 | 46.0000               |

Thus, a small error in the data gives a completely different solution.



Recall that, high-order polynomials give too many oscillations and are sensitive to errors.

We introduce smoothing, which is a technique of using lower-order polynomials to capture the trend in the data.



#### Note:

- Using a 9-th order polynomial (10 data points) gives an oscillatory model function.
- Using a lower-order polynomial (quadratic in this case) gives a smoother model function which can still capture the trend.
- The lower-order polynomial does not necessarily pass through all data points.



The process of smoothing requires two decisions:

- 1. the order of the interpolating polynomial must be selected—
  - we discuss this now,
  - the main tool is using divided differences;
- 2. the coefficients of the polynomial must be determined-
  - one uses the methods introduced in Chap. 3, since the type of the model function has been determined,
  - e.g. the least-squares criterion.

Consider the data points  $(x_1, y_1), (x_2, y_2)$  and  $(x_3, y_3)$ .

- $\frac{y_2 y_1}{x_2 x_1}$  can be regarded as an approximation to the first derivative over  $[x_1, x_2]$ ,
- $\frac{y_3 y_2}{x_3 x_2}$  can be regarded as an approximation to the first derivative over  $[x_2, x_3]$ .



These are called first divided differences.

How about second derivatives (the derivative of the first derivative)?

One can use the number

$$\frac{\frac{y_3 - y_2}{x_3 - x_2} - \frac{y_2 - y_1}{x_2 - x_1}}{X_3 - X_1}$$

as an approximation to the second derivative over the interval  $[x_1, x_3]$ .

This is called a second divided difference.



#### We obtain the following table, called the divided difference table.



**General rule:** Assume *n*-th divided differences are obtained. To get (n + 1)-th divided differences, we take the difference between adjacent n-th divided differences and then divide it by the length of the interval over which the change has taken place.

Consider the data set:

| $x_i$ | 0 | 2 | 4  | 6  | 8  |
|-------|---|---|----|----|----|
| Уi    | 0 | 4 | 16 | 36 | 64 |

# We obtain the following divided difference table:

| Data                                                                                      | Divided differences                                                                                                                                                            | . 2                |
|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| $x_i  y_i$                                                                                | $\Delta \Delta^2$                                                                                                                                                              | $\Delta^{3}$       |
| $\Delta x = 6 \begin{cases} 0 & 0 \\ 2 & & 4 \\ 4 & 16 \\ 6 & 36 \\ 8 & & 64 \end{cases}$ | $\begin{array}{c} 4/2 = 2 \\ 12/2 = 6 \\ 20/2 = 10 \\ 28/2 = 14 \\ \end{array} \begin{array}{c} 4/4 = 1 \\ 4/4 = 1 \\ \end{array} \begin{array}{c} 0 \\ 0 \\ 0 \\ \end{array}$ | 0/6 = 0<br>0/6 = 0 |

#### Consider the data set

| $c_i$       | 100 | 200 | 300 | 400 | 500  | 600  | 700  | 800  |
|-------------|-----|-----|-----|-----|------|------|------|------|
| $t_i$ (sec) | 205 | 430 | 677 | 945 | 1233 | 1542 | 1872 | 2224 |

We have already constructed a 7th-order polynomial model. We will now construct a lower-order polynomial model. Two steps:

- determine the order of the polynomial;
- find the coefficients in the polynomial.

# **Step 1**: We need divided differences. We obtain the following divided difference table:

| Γ                                                    | Data                                                     | Divided differences                                                |                                                          |                                                |                                      |  |  |  |
|------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------|------------------------------------------------|--------------------------------------|--|--|--|
| x <sub>i</sub>                                       | Уі                                                       | $\Delta$                                                           | $\Delta^2$                                               | $\Delta^3$                                     | $\Delta^4$                           |  |  |  |
| 100<br>200<br>300<br>400<br>500<br>600<br>700<br>800 | 205<br>430<br>677<br>945<br>1233<br>1542<br>1872<br>2224 | 2.2500<br>2.4700<br>2.6800<br>2.8800<br>3.0900<br>3.3000<br>3.5200 | 0.0011<br>0.0011<br>0.0010<br>0.0011<br>0.0011<br>0.0011 | 0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000 | 0.0000<br>0.0000<br>0.0000<br>0.0000 |  |  |  |

From the table, we see the third divided differences are almost zero.

Hence, it is reasonable to assume that a quadratic polynomial will fit the data well.

**Step 2**: We will fit a quadratic polynomial  $P(c) = a + bc + dc^2$ . We use the least-squares criterion:

$$S(a,b,d) = \sum_{i=1}^{m} |t_i - (a + bc_i + dc_i^2)|^2.$$

Taking partial derivatives,

$$0 = \frac{\partial S}{\partial a} = \sum_{i=1}^{m} (-2)(t_i - a - bc_i - dc_i^2),$$
  

$$0 = \frac{\partial S}{\partial b} = \sum_{i=1}^{m} (-2c_i)(t_i - a - bc_i - dc_i^2),$$
  

$$0 = \frac{\partial S}{\partial d} = \sum_{i=1}^{m} (-2c_i^2)(t_i - a - bc_i - dc_i^2).$$

Hence, we obtain the following system:

$$a(\sum_{i=1}^{m} 1) + b(\sum_{i=1}^{m} c_i) + d(\sum_{i=1}^{m} c_i^2) = \sum_{i=1}^{m} t_i,$$
  

$$a(\sum_{i=1}^{m} c_i) + b(\sum_{i=1}^{m} c_i^2) + d(\sum_{i=1}^{m} c_i^3) = \sum_{i=1}^{m} c_i t_i,$$
  

$$a(\sum_{i=1}^{m} c_i^2) + b(\sum_{i=1}^{m} c_i^3) + d(\sum_{i=1}^{m} c_i^4) = \sum_{i=1}^{m} c_i^2 t_i,$$

where  $c_i$  and  $t_i$  are obtained from the table:

| $c_i$       | 100 | 200 | 300 | 400 | 500  | 600  | 700  | 800  |
|-------------|-----|-----|-----|-----|------|------|------|------|
| $t_i$ (sec) | 205 | 430 | 677 | 945 | 1233 | 1542 | 1872 | 2224 |

Using the data, we have

8a + 36b + 204d = 9128, 36a + 204b + 1296d = 53,189,204a + 1296b + 8772d = 343,539.

Solving it, we have

$$a = 0.142, \quad b = 194.226, \quad d = 10.464.$$

Thus, the model function is

$$P(c) = 0.142 + 194.226c + 10.464c^2$$
.

# We see that a lower-order polynomial can effectively capture the trend.



# **Problem:** Determine the stopping distance as a function of the speed of the car.

#### The following data set is obtained.

| Speed $v$ (mph) | 20 | 25 | 30   | 35   | 40  | 45    | 50  | 55    | 60  | 65    | 70  | 75  | 80  |
|-----------------|----|----|------|------|-----|-------|-----|-------|-----|-------|-----|-----|-----|
| Distance d (ft) | 42 | 56 | 73.5 | 91.5 | 116 | 142.5 | 173 | 209.5 | 248 | 292.5 | 343 | 401 | 464 |

#### We will construct a model using a lower-order polynomial.

#### **Step 1**: Construct a divided difference table.

| D                                                                          | ata                                                                                           | Divided differences                                                                                                     |                                                                                                  |                                                                                                      |                                                                                                                  |  |  |  |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--|--|--|
| $v_i$                                                                      | $d_i$                                                                                         | Δ                                                                                                                       | $\Delta^2$                                                                                       | $\Delta^3$                                                                                           | $\Delta^4$                                                                                                       |  |  |  |
| 20<br>25<br>30<br>35<br>40<br>45<br>50<br>55<br>60<br>65<br>70<br>75<br>80 | 42<br>56<br>73.5<br>91.5<br>116<br>142.5<br>173<br>209.5<br>248<br>292.5<br>343<br>401<br>464 | 2.2800<br>3.5000<br>3.6000<br>4.9000<br>5.3000<br>6.1000<br>7.3000<br>7.7000<br>8.9000<br>10.1000<br>11.6000<br>12.6000 | 0.0700<br>0.0100<br>0.1300<br>0.0400<br>0.1200<br>0.1200<br>0.1200<br>0.1200<br>0.1500<br>0.1000 | -0.0040<br>0.0080<br>-0.0060<br>0.0027<br>-0.0053<br>0.0053<br>0.0005<br>0.0000<br>0.0020<br>-0.0033 | $\begin{array}{c} 0.0006\\ -0.0007\\ 0.0004\\ 0.0000\\ -0.0004\\ 0.0005\\ -0.0003\\ 0.0001\\ -0.0003\end{array}$ |  |  |  |

**Note:** 3-rd divided differences are small compared to first and second divided differences.

We will, again, find a quadratic model  $P(v) = a + bv + cv^2$ .

**Step 2**: Similar to the previous example, we obtain the following system:

$$a(\sum_{i=1}^{m} 1) + b(\sum_{i=1}^{m} v_i) + c(\sum_{i=1}^{m} v_i^2) = \sum_{i=1}^{m} d_i,$$
  

$$a(\sum_{i=1}^{m} v_i) + b(\sum_{i=1}^{m} v_i^2) + c(\sum_{i=1}^{m} v_i^3) = \sum_{i=1}^{m} v_i d_i,$$
  

$$a(\sum_{i=1}^{m} v_i^2) + b(\sum_{i=1}^{m} v_i^3) + c(\sum_{i=1}^{m} v_i^4) = \sum_{i=1}^{m} v_i^2 d_i,$$

where  $v_i$  and  $d_i$  are obtained from the data set:

| Speed $v$ (mph) | 20 | 25 | 30   | 35   | 40  | 45    | 50  | 55    | 60  | 65    | 70  | 75  | 80  |
|-----------------|----|----|------|------|-----|-------|-----|-------|-----|-------|-----|-----|-----|
| Distance d (ft) | 42 | 56 | 73.5 | 91.5 | 116 | 142.5 | 173 | 209.5 | 248 | 292.5 | 343 | 401 | 464 |

MATH3290-2023/24

Using the data, we have

- 13 a + 650 b + 37050 c = 2652.5,
- 650 a + 37050 b + 2307500 c = 163970,
- 37050 a + 2307500 b + 152343750 c = 10804975.

Solving it, we have

$$a = 50.0594, \quad b = -1.9701, \quad c = 0.0886.$$

Thus, the model function is

 $P(v) = 50.0594 - 1.9701v + 0.0886v^2.$ 

We obtained a good model:  $P(v) = 50.0594 - 1.9701v + 0.0886v^2$ .



We discuss cubic spline models in this section.

### Key idea:

- Focus locally first.
- Use local low-order polynomials.
- Connect the low-order polynomials to obtain the global fitted curve.

What is a cubic spline?

It is a cubic polynomial between successive data points.

**Cubic spline:** A function that is a cubic polynomial between successive data points.

Consider data points:  $(x_1, y_1), (x_2, y_2)$  and  $(x_3, y_3)$ .

The cubic spline S(x) is

• a cubic polynomial on  $[x_1, x_2]$ 

$$S_1(x) = a_1 + b_1 x + c_1 x^2 + d_1 x^3,$$

• a cubic polynomial on  $[x_2, x_3]$ 

$$S_2(x) = a_2 + b_2 x + c_2 x^2 + d_2 x^3.$$



#### **Q:** How do we find S(x)?

The following conditions are required for finding S(x). Note that we need 8 conditions.

• S(x) goes through data points. On the interval  $[x_1, x_2]$ :

$$y_1 = S_1(x_1) = a_1 + b_1x_1 + c_1x_1^2 + d_1x_1^3,$$
  

$$y_2 = S_1(x_2) = a_1 + b_1x_2 + c_1x_2^2 + d_1x_2^3.$$

On the interval  $[x_2, x_3]$ :

$$y_2 = S_2(x_2) = a_2 + b_2x_2 + c_2x_2^2 + d_2x_2^3,$$
  

$$y_3 = S_2(x_3) = a_2 + b_2x_3 + c_2x_3^2 + d_2x_3^3.$$





• *S*'(*x*) is continuous at interior data points

$$S'_1(x) = b_1 + 2c_1x + 3d_1x^2,$$
  

$$S'_2(x) = b_2 + 2c_2x + 3d_2x^2.$$

Continuity at x<sub>2</sub>:

$$b_1 + 2c_1x_2 + 3d_1x_2^2 = b_2 + 2c_2x_2 + 3d_2x_2^2.$$

• *S*"(*x*) is continuous at interior data points

$$S_1''(x) = 2c_1 + 6d_1x,$$
  

$$S_2''(x) = 2c_2 + 6d_2x.$$

Continuity at x<sub>2</sub>:

$$2c_1 + 6d_1x_2 = 2c_2 + 6d_2x_2.$$



Remark We have 2 more conditions. Finally, we need 2 extra conditions.

The following choice gives the natural cubic spline.

• S''(x) = 0 at the two end-points  $S''_1(x) = 2c_1 + 6d_1x,$   $S''_2(x) = 2c_2 + 6d_2x.$ At  $x_1$ :  $2c_1 + 6d_1x_1 = 0.$ At  $x_3$ :  $2c_2 + 6d_2x_3 = 0.$ 





### An example

Consider the data set:

| Х | 1 | 2 | 3  |
|---|---|---|----|
| у | 5 | 8 | 25 |

We first write down the equations.

• *S*(*x*) goes through data points: On the interval [1, 2]:

$$5 = S_1(1) = a_1 + b_1(1) + c_1(1)^2 + d_1(1)^3,$$
  

$$8 = S_1(2) = a_1 + b_1(2) + c_1(2)^2 + d_1(2)^3.$$

On the interval [2,3]:

$$8 = S_2(2) = a_2 + b_2(2) + c_2(2)^2 + d_2(2)^3,$$
  

$$25 = S_2(3) = a_2 + b_2(3) + c_2(3)^2 + d_2(3)^3.$$

MATH3290-2023/24

| Х | 1 | 2 | 3  |  |  |
|---|---|---|----|--|--|
| у | 5 | 8 | 25 |  |  |

• S'(x) is continuous at interior data points:

$$b_1 + 2c_1(2) + 3d_1(2)^2 = b_2 + 2c_2(2) + 3d_2(2)^2.$$

• S''(x) is continuous at interior data points:

$$2c_1 + 6d_1(2) = 2c_2 + 6d_2(2).$$

• S''(x) = 0 at the two end-points At  $x_1$ :

 $2c_1 + 6d_1(1) = 0$ ,

At *x*<sub>3</sub>:

$$2c_2 + 6d_2(3) = 0.$$

The idea is to first solve  $c_1$ ,  $d_1$ ,  $c_2$ ,  $d_2$  in terms of  $b_1$ ,  $b_2$ .

From the last four equations, we have

$$c_1 = \frac{b_2 - b_1}{8}, \qquad d_1 = \frac{b_1 - b_2}{24},$$
$$c_2 = \frac{3(b_1 - b_2)}{8}, \qquad d_2 = \frac{b_2 - b_1}{24}.$$

Using these in the first 4 equations,

$$5 = a_{1} + b_{1} + \frac{b_{2} - b_{1}}{8} + \frac{b_{1} - b_{2}}{24},$$

$$8 = a_{1} + 2b_{1} + \frac{b_{2} - b_{1}}{2} + \frac{b_{1} - b_{2}}{3},$$

$$8 = a_{2} + 2b_{2} + \frac{3(b_{1} - b_{2})}{2} + \frac{b_{2} - b_{1}}{3},$$

$$25 = a_{2} + 3b_{2} + \frac{27(b_{1} - b_{2})}{8} + \frac{9(b_{2} - b_{1})}{8}.$$

MATH3290-2023/24

Eliminating  $a_1$  and  $a_2$ , we get

$$3 = \frac{11b_1 + b_2}{12}, \qquad 17 = \frac{13b_1 - b_2}{12}.$$

Solving, we get

$$b_1 = 10, \qquad b_2 = -74.$$

The other six unknowns can be solved easily

$$a_1 = 2, a_2 = 58, \quad c_1 = -10.5, c_2 = 31.5, \quad d_1 = 3.5, d_2 = -3.5.$$

Hence the cubic spline S(x) is

$$S_1(x) = 2 + 10x - 10.5x^2 + 3.5x^3, \quad x \in [1, 2],$$
  
$$S_2(x) = 58 - 74x + 31.5x^2 - 3.5x^3, \quad x \in [2, 3].$$



$$\begin{split} S_1(x) &= 2 + 10x - 10.5x^2 + 3.5x^3, \\ &x \in [1,2], \\ S_2(x) &= 58 - 74x + 31.5x^2 - 3.5x^3, \\ &x \in [2,3]. \end{split}$$

For example, if we need to predict the value at x = 1.67, we can evaluate S(1.67).

Since  $1.67 \in [1, 2]$ , we have  $S(1.67) = S_1(1.67) = 5.72$ .

The construction of cubic spline can be generalized.

Let  $(x_i, y_i)$ , i = 1, 2, ..., m + 1 be a set of data points.

The cubic spline S(x) is a cubic polynomial on each  $[x_i, x_{i+1}]$ ,

$$S(x) = \begin{cases} S_1(x) &= a_1 + b_1 x + c_1 x^2 + d_1 x^3, & x \in [x_1, x_2], \\ S_2(x) &= a_2 + b_2 x + c_2 x^2 + d_2 x^3, & x \in [x_2, x_3], \\ &\vdots \\ S_m(x) &= a_m + b_m x + c_m x^2 + d_m x^3, & x \in [x_m, x_{m+1}]. \end{cases}$$

We need 4*m* equations.

First, *S*(*x*) goes through all data points. On [*x*<sub>1</sub>, *x*<sub>2</sub>],

$$y_1 = S_1(x_1) = a_1 + b_1x_1 + c_1x_1^2 + d_1x_1^3,$$
  

$$y_2 = S_1(x_2) = a_1 + b_1x_2 + c_1x_2^2 + d_1x_2^3.$$

On [x<sub>2</sub>, x<sub>3</sub>],

$$y_2 = S_2(x_2) = a_2 + b_2x_2 + c_2x_2^2 + d_2x_2^3,$$
  

$$y_3 = S_2(x_3) = a_2 + b_2x_3 + c_2x_3^2 + d_2x_3^3.$$

On  $[x_m, x_{m+1}]$ ,

$$y_m = S_m(x_m) = a_m + b_m x_m + c_m x_m^2 + d_m x_m^3,$$
  
$$y_{m+1} = S_m(x_{m+1}) = a_m + b_m x_{m+1} + c_m x_{m+1}^2 + d_m x_{m+1}^3.$$

There are 2*m* equations.

Second, S'(x) is continuous at interior points.

At  $x_2$ , we need  $S'_1(x_2) = S'_2(x_2)$ :

$$b_1 + 2c_1x_2 + 3d_1x_2^2 = b_2 + 2c_2x_2 + 3d_2x_2^2.$$

At  $x_3$ , we need  $S'_2(x_3) = S'_3(x_3)$ :

$$b_2 + 2c_2x_3 + 3d_2x_3^2 = b_3 + 2c_3x_3 + 3d_3x_3^2.$$

At  $x_m$ , we need  $S'_{m-1}(x_m) = S'_m(x_m)$ :

$$b_{m-1} + 2c_{m-1}x_m + 3d_{m-1}x_m^2 = b_m + 2c_mx_m + 3d_mx_m^2.$$

There are m - 1 equations.

Third, S''(x) is continuous at interior points. At  $x_2$ , we need  $S''_1(x_2) = S''_2(x_2)$ :

$$2c_1 + 6d_1x_2 = 2c_2 + 6d_2x_2.$$

At  $x_3$ , we need  $S_2''(x_3) = S_3''(x_3)$ :

$$2c_2 + 6d_2x_3 = 2c_3 + 6d_3x_3.$$

At  $x_m$ , we need  $S''_{m-1}(x_m) = S''_m(x_m)$ :

$$2c_{m-1} + 6d_{m-1}x_m = 2c_m + 6d_m x_m.$$

There are m - 1 equations.

Finally, we add 2 more conditions at end-points,

$$S_1''(x_1) = 0, \qquad S_m''(x_{m+1}) = 0.$$

That is,

$$2c_1 + 6d_1x_1 = 0,$$
  $2c_m + 6d_mx_{m+1} = 0.$ 

There are totally 4*m* equations.

We can determine all coefficients in S(x).

One needs to write a computer code to solve this. For example, there is a built-in class **CubicSpline** in **scipy**—a famous python package—to do this, and you generally need to a few lines of codes.

# A remark

The choice

$$S_1''(x_1) = 0, \qquad S_m''(x_{m+1}) = 0$$

gives smallest curvature. Note for a curve (x, f(x)), the mathematical definition of the curvature at x is  $f''/(1 + f'^2)^{3/2}$ .

Let G be the cubic spline with other choices of  $G''(x_1)$  and  $G''(x_{m+1})$ , then we have

$$\int_{x_1}^{x_{m+1}} (S'')^2 \, \mathrm{d}x \le \int_{x_1}^{x_{m+1}} (G'')^2 \, \mathrm{d}x.$$

To show this

$$\int_{x_1}^{x_{m+1}} (G'')^2 dx = \int_{x_1}^{x_{m+1}} (G'' - S'' + S'')^2 dx$$
$$= \int_{x_1}^{x_{m+1}} (G'' - S'')^2 dx + 2 \int_{x_1}^{x_{m+1}} (G'' - S'') S'' dx + \int_{x_1}^{x_{m+1}} (S'')^2 dx.$$

We will show

$$\int_{x_1}^{x_{m+1}} \left( G'' - S'' \right) S'' \, \mathrm{d} x = 0.$$

Indeed,

$$\begin{split} &\int_{x_1}^{x_{m+1}} \left( G'' - S'' \right) S'' \, \mathrm{d}x = \sum_{i=1}^m \int_{x_i}^{x_{i+1}} \left( G'' - S'' \right) S'' \, \mathrm{d}x \\ &= \sum_{i=1}^m \left\{ -\int_{x_i}^{x_{i+1}} \left( G' - S' \right) S''' \, \mathrm{d}x + \left( G' - S' \right) S'' \Big|_{x_i}^{x_{i+1}} \right\} \\ &= \sum_{i=1}^m \left\{ -\int_{x_i}^{x_{i+1}} \left( G' - S' \right) S''' \, \mathrm{d}x \right\} \\ &= \sum_{i=1}^m \left\{ -S'''_i \left( (G - S)(x_{i+1}) - (G - S)(x_i) \right) \right\} = 0. \end{split}$$

MATH3290-2023/24

### Summary



All figures, tables, and data appearing in the slides are only used for teaching under guidelines of Fair Use.