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Introduction

In Chap. 1 (in the example of yeast population), we encounter the
problem of finding a function that explains the data.

We want to find a constant k > 0 such that

∆pn = k pn.
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Model fitting

Given a set of data points, we choose a curve (i.e. a function) that
best fits the data.

Then we can use the function to make predictions.

Measurement data The best fitted curve

One can predict the value of y for x1 ≤ x ≤ x5.
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Two main steps

There are two main steps in model fitting.

• When a given model type is chosen, how to find the parameters
in the model— e.g., in the yeast population example, we have
chosen the model function ∆pn = kpn, and our task is to find k.

• When the data set is given, how do you choose the most suitable
model function— e.g. in the yeast population example, how do
you make the decision of using the model function ∆pn = kpn.
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Model fitting vs interpolation

• Model fitting (Chap. 3),
• Curve may not meet the
points.

• Errors in data expected.
• Theory-driven = a particular
form of model function is
assumed.

• Interpolation (Chap. 4).
• Curve goes through all
points.

• Data are accurate.
• Data-driven = use the data to
find the form of the model
function.
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Methods of model fitting

Given a set of m data points: (xi, yi), i = 1, 2, . . . ,m

Given a type of model function y = f (x; θ), depending on some
parameters θ.

E.g. f (x; θ) = ax + b, ax2 + bx + c, aebx , . . .

Objective: find the model function that best fits the data

We need to give a precise meaning of best.

There are three commonly used criteria.
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Chebyshev criterion

The first one is the Chebyshev criterion.

Pafnuty Chebyshev
(1821-1984)

Pafnuty Chebyshev, is known for
Chebyshev’s polynomials, Chebyshev’s
inequality...
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Chebyshev criterion

The first one is the Chebyshev criterion.

We will find the parameters in the model function f (x; θ) such that
the largest absolute deviation is minimized.

That is, we will minimize the value

max
i=1,...,m

|yi − f (xi; θ)|.

Remarks:

• It is not an easy mathematical problem.
• In some cases, one needs to solve a linear programming
problem (see Chap. 7).
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Min sum of absolute deviations

The second method is minimizing the sum of the absolute deviations.

We will find the parameters in the model function f (x; θ) such that
the the sum of the absolute deviations is minimized.

That is, we will minimize the value

m∑
i=1

|yi − f (xi; θ)|.

This is again a difficult mathematical problem. E.g. one cannot use
calculus techniques to find the minimum.
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Least-squares criterion

The third method is the least-squares criterion.

We will find the parameters in the model function f (x; θ) such that
the the sum of the squared deviations is minimized.

That is, we will minimize the value

m∑
i=1

|yi − f (xi; θ)|
2
.

Remarks:

• It is a very popular method.
• The solution can be easily obtained by calculus methods.
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Connection of two criteria

We give a relation of Chebyshev and least-squares criteria.

• Suppose a function g1(x) = f (x; θ1) is obtained by Chebyshev
criterion.

• We define ci = |yi − g1(xi)|, i = 1, 2, . . . ,m.
• We define cmax = maxi ci the maximum deviation.
• The Chebyshev criterion implies g1(x) is chosen so that cmax is
smallest among all choices of parameters θ.

• Suppose a function g2(x) = f (x; θ2) is obtained by least-squares
criterion.

• We define di = |yi − g2(xi)|, i = 1, 2, . . . ,m.
• We define dmax = maxdi the maximum deviation.

Kuang HUANG MATH3290-2023/24 11



Then we have the following conclusions.

• By the Chebyshev criterion, cmax ≤ dmax.
• By the least-squares criterion,

d21 + d22 + · · ·+ d2m ≤ c21 + c22 + · · ·+ c2m
⇒ d21 + d22 + · · ·+ d2m ≤ c2max + c2max + · · ·+ c2max = mc2max

⇒
√
d21 + d22 + · · ·+ d2m

m
≤ cmax.

Combining above√
d21 + d22 + · · ·+ d2m

m
≤ cmax ≤ dmax.
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We have the following relationship for the above two criteria

D :=

√
d21 + d22 + · · ·+ d2m

m
≤ cmax ≤ dmax.

Suppose you care the maximum deviation, and you know that it is
more convenient to use the least-squares criterion.

• If D and dmax are close, then the solution obtained by the
least-squares criterion is a good approximation.

• If D and dmax are not close, then one should use the Chebyshev
criterion.
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Applying least-squares criterion

Given a data set (xi, yi), i = 1, 2, . . . ,m.

Assume that the model function is y = f (x;p1, . . . ,pk), where
p1,p2, . . . ,pk are the model parameters.

Consider the least-squares criterion: find p1,p2, . . . ,pk so that

S(p1,p2, . . . ,pk) :=
m∑
i=1

|yi − f (xi;p1,p2, . . . ,pk)|
2

is minimized.

Use standard calculus method, find the solution by

∂S
∂pj

= −2
m∑
i=1

(yi − f (xi))
∂f
∂pj

= 0, j = 1, 2, . . . , k.
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Fitting a line

Assume that the model function is a line

y = f (x;a,b) = ax + b.

Then we need to minimize

S(a,b) =
m∑
i=1

|yi − (axi + b)|2.

Now we find the partial derivatives

∂S
∂a

=
m∑
i=1

{−2xi(yi − axi − b)},

∂S
∂b

=
m∑
i=1

{−2(yi − axi − b)}.
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To find the minimum, we need

0 =
∂S
∂a

=
m∑
i=1

{−2xi(yi − axi − b)},

0 =
∂S
∂b

=
m∑
i=1

{−2(yi − axi − b)}.

So, we have

a
( m∑

i=1

x2i
)
+ b

( m∑
i=1

xi
)

=
m∑
i=1

xiyi,

a
( m∑

i=1

xi
)
+ b

( m∑
i=1

1
)

=
m∑
i=1

yi.

One can then find a and b by solving the above linear system.

Kuang HUANG MATH3290-2023/24 16



Consider the data set

Then we have
m∑
i=1

x2i = 30,
m∑
i=1

xi = 10,
m∑
i=1

1 = 4,

m∑
i=1

xiyi = 892.6,
m∑
i=1

yi = 255.3.

The linear system is

30a+ 10b = 892.6, 10a+ 4b = 255.3.

Solving, we have a = 50.87 and b = −63.35.
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Hence, our model function is f ∗(x) = 50.87x − 63.35.
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One can use the model to predict the value at x = 2.5

y = f ∗(2.5) = 50.87(2.5)− 63.35 = 63.825.
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Fitting a more general model

Assume that the model function is

f (x;a,b) = ag(x) + bh(x).

Then we need to minimize

S(a,b) =
m∑
i=1

∣∣∣yi − (
ag(xi) + bh(xi)

)∣∣∣2.
Taking partial derivatives,

∂S
∂a

=
m∑
i=1

{
−2g(xi)

(
yi − ag(xi)− bh(xi)

)}
,

∂S
∂b

=
m∑
i=1

{
−2h(xi)

(
yi − ag(xi)− bh(xi)

)}
.
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To find the minimum, we solve

0 =
∂S
∂a

=
m∑
i=1

{
−2g(xi)

(
yi − ag(xi)− bh(xi)

)}
,

0 =
∂S
∂b

=
m∑
i=1

{
−2h(xi)

(
yi − ag(xi)− bh(xi)

)}
.

We obtain the linear system

a
( m∑

i=1

g(xi)2
)
+ b

( m∑
i=1

g(xi)h(xi)
)
=

m∑
i=1

g(xi) yi,

a
( m∑

i=1

g(xi)h(xi)
)
+ b

( m∑
i=1

h(xi)2
)
=

m∑
i=1

h(xi) yi.
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Consider the data set

x −1 − 1
2 0 1

2 1
y −1 0 1 2 1

and the model function

f (x;a,b) = a cos(πx) + b sin(πx).

Then we define

g(x) = cos(πx), h(x) = sin(πx).
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To find the linear system, we need

m∑
i=1

g(xi)2 = 3,
m∑
i=1

g(xi)h(xi) = 0,
m∑
i=1

h(xi)2 = 2,

m∑
i=1

g(xi) yi = 1,
m∑
i=1

h(xi) yi = 2.

Hence, the linear system

a
( m∑

i=1

g(xi)2
)
+ b

( m∑
i=1

g(xi)h(xi)
)

=
m∑
i=1

g(xi) yi,

a
( m∑

i=1

g(xi)h(xi)
)
+ b

( m∑
i=1

h(xi)2
)

=
m∑
i=1

h(xi) yi.
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To find the linear system, we need

m∑
i=1

g(xi)2 = 3,
m∑
i=1

g(xi)h(xi) = 0,
m∑
i=1

h(xi)2 = 2,

m∑
i=1

g(xi) yi = 1,
m∑
i=1

h(xi) yi = 2.

becomes
3a+ 0b = 1, 0a+ 2b = 2.
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To find the linear system, we need

m∑
i=1

g(xi)2 = 3,
m∑
i=1

g(xi)h(xi) = 0,
m∑
i=1

h(xi)2 = 2,

m∑
i=1

g(xi) yi = 1,
m∑
i=1

h(xi) yi = 2.

We have a = 1/3 and b = 1.
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Hence, the model function is f ∗(x) = 1
3 cos(πx) + sin(πx).
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Note that the trigonometric polynomial approximation

f (x) ∼ a0
2

+
N∑
n=1

an cos(nπx) + bn sin(nπx)

is widely used in many engineering areas.
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Transformed least-squares fitting

Consider the model function y = f (x;a,b) = beax .

To fit this function to the data, we minimize

S(a,b) =
m∑
i=1

|yi − beaxi |2.

Taking partial derivatives,

∂S
∂a

=
m∑
i=1

(
− 2bxieaxi(yi − beaxi)

)
,

∂S
∂b

=
m∑
i=1

(
− 2eaxi(yi − beaxi)

)
.

Note: the model function depends nonlinearly on a and b.
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Given the model function y = beax , we have

ln y = lnb+ ax.

Introduce the new variables ỹ = ln y and b̃ = lnb.

Now consider the data set (xi, ỹi), and the model function ỹ = b̃+ ax.

Note: the new model depends linearly on a and b̃.

Now,

a
( m∑

i=1

x2i
)
+ b̃

( m∑
i=1

xi
)

=
m∑
i=1

xiỹi,

a
( m∑

i=1

xi
)
+ b̃

( m∑
i=1

1
)

=
m∑
i=1

ỹi.

We can get a and b̃. Then b = eb̃.
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Consider the data set

We will fit the model function y = beax to the data by the
transformed least-squares criterion.

The transformed data set is
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Then we have
m∑
i=1

xiỹi = 41,
m∑
i=1

ỹi = 14.4.

The linear system is

30a+ 10b̃ = 41, 10a+ 4b̃ = 14.4.

Solving, we obtain a = 1 and b̃ = 1.1.

Hence, the model function is y = eb̃ex = 3.0042ex .
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Polynomial approximation

If we consider in a continuous level, i.e., we have a data set (x, f (x))
where x ∈ [−1, 1] (f (x) ∈ C[−1, 1]). We want to find a polynomial p(x)
whose degree is no greater than n (p(x) ∈ Pn) that best fits the data.

Why polynomials?

• Evaluations of polynomials only require additions and
multiplications, which computers are very good at.

• We have a lot of fast algorithms available. For example, Horner’s
method—

p(x) = a0 + a1x + · · ·+ an−1xn−1 + anxn =⇒
bn = an,
bn−1 = an−1 + bnx,
. . . ,

b0 = a0 + b1x −→ p(x).
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Three criteria again

• The Chebyshev criterion

min
p∈Pn

‖p− f‖L∞ = min
p∈Pn

max
x∈[−1,1]

|p(x)− f (x)|.

• Minimize the sum of the absolute deviations

min
p∈Pn

‖p− f‖L1 = min
p∈Pn

∫ 1

−1
|p(x)− f (x)|dx.

• The least-squares criterion

min
p∈Pn

‖p− f‖2L2 = min
p∈Pn

∫ 1

−1
|p(x)− f (x)|2 dx.
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least-squares criterion

Note that p(x) = a0 + a1x + · · ·+ an−1xn−1 + anxn, and we need to
determine a0,a1, . . . ,an.

According to the least-squares criterion, we have∫ 1

−1
|p(x)− f (x)|2 dx =

∫ 1

−1
|p(x)|2 − 2p(x)f (x) + |f (x)|2 dx

=
∑

i,j=0,...,n

aiaj
∫ 1

−1
xi+j dx −

∑
i=0,...,n

2ai
∫ 1

−1
f (x)xi dx +

∫ 1

−1
|f (x)|2 dx.

Take partial derivatives, we obtain a linear system for
a = (a0,a1, . . . ,an)ᵀ

Ma = b,

where Mi,j =
∫ 1
−1 x

i+j dx and bi =
∫ 1
−1 f (x)x

i dx.
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Disclaimer

All figures, tables, and data appearing in the slides are only used for
teaching under guidelines of Fair Use.
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