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About Final

• Date: Apr. 25.
• The exam is a closed-book 2-hour exam.
• Laptops, tablets, and smartphones are not permitted; however,
calculators are allowed.

• Review classes on Apr. 19.
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Scope of Final

• Chapter 1: Modeling Change (difference equations)
• Chapter 3: Model Fitting (Chebeshev criterion, least-squares
criterion)

• Chapter 4: Experimental Modeling (one-term models, high-order
polynomial models, cubic splines)

• Chapter 7: Optimization of Discrete Models (linear programming)
• Chapter 8: Modeling Using Graph Theory (shortest path problem,
maximal flow problem)
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• Chapter 11: Modeling with a Differential Equation (solving the
equation, equilibrium points and their stability, graphical
method, Euler’s method)

• Chapter 12: Modeling with Systems of Differential Equations
(solving the system of equations, equilibrium points and their
stability, graphical method, Euler’s method)

• Chapter 13: Optimization of Continuous Models (nonlinear
optimization, unconstrained optimization, equality/inequality
constraints, KKT condition)
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Introduction

We will consider optimization problems in which the objective
function f is nonlinear.

That is, find X∗ such that

f (X) is optimized.

Again, X = (X1, . . . , Xn) are called decision variables.

• Unconstrained: f is optimized without restrictions on X (X ∈ Rn).
• Constrained: there are restrictions on X.

• Equality, gi(X) = bi , for i = 1, 2, . . . ,m.
• Inequality, gi(X) ≤ bi , for i = 1, 2, . . . ,m.
• Mixed, both equality and inequality.
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Unconstrained optimization

We find (x∗, y∗) such that f (x, y) is optimized.

Method 1: using critical points.

If (x∗, y∗) attains the maximum/minimum of f (x, y), then

∇f (x∗, y∗) :=
(
fx(x∗, y∗), fy(x∗, y∗)

)
= (0, 0)

To check (x∗, y∗) is a max or min, we use the second derivative test.

We define the Hessian matrix by

H(x, y) =
(
fxx(x, y) fxy(x, y)
fyx(x, y) fyy(x, y)

)
.
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Taylor expansion:

f (x∗ + tu1, y∗ + tu2) =f (x∗, y∗) + (tu1)fx(x∗, y∗) + (tu2)fy(x∗, y∗)

+
1
2
(tu1)2fxx(x∗, y∗) + (tu1)(tu2)fxy(x∗, y∗)

+
1
2
(tu2)2fyy(x∗, y∗) + O(t3).

Define u = (u1,u2). Note that ∇f (x∗, y∗) = (0, 0).

The above formula can be written as

f (x∗ + tu1, y∗ + tu2) = f (x∗, y∗) + t2

2
uTH(x∗, y∗)u+ O(t3).
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f (x∗ + tu1, y∗ + tu2) = f (x∗, y∗) + t2

2
uTH(x∗, y∗)u+ O(t3)

• If H(x∗, y∗) is positive definite, that is,

uTH(x∗, y∗)u > 0, for all non-zero u.

(also equivalent to H(x∗, y∗) has positive eigenvalues), then

f (x∗ + tu1, y∗ + tu2) ≥ f (x∗, y∗), for small t > 0.

Hence, (x∗, y∗) is a local min.
• If H(x∗, y∗) is negative definite, that is,

uTH(x∗, y∗)u < 0, for all non-zero u.

(also equivalent to H(x∗, y∗) has negative eigenvalues), then

f (x∗ + tu1, y∗ + tu2) ≤ f (x∗, y∗), for small t > 0.

Hence, (x∗, y∗) is a local max.
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Example: maximizing profit

Assume you are producing computers.

1. Two specs: one with 27 inch monitor, the other with 31 inch
monitor.

2. A fixed cost: 400,000.
3. The cost for making one 27 (31) inch model is 1950 (2250).
4. The retail price for 27 (31) model is 3390 (3990).
5. For each unit sold, the price is reduced by 0.1.
6. For each 27 model sold, the price of 31 model is reduced by 0.04.
7. For each 31 model sold, the price of 27 model is reduced by 0.03.
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We can then set up the following notations.

• x1, x2 = numbers of 27 (31) inch models.
• P1,P2 = prices of 27 (31) inch models.

P1 = 3390− 0.1x1 − 0.03x2, P2 = 3990− 0.04x1 − 0.1x2.

• R = revenue obtained from sales = P1x1 + P2x2.
• C = cost to make computers = 400,000+ 1950x1 + 2250x2.
• P = total profit = R− C.

Let us forget about non-negativity constraints.
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Combining above, we will maximize

P(x1, x2) = R− C = P1x1 + P2x2 − C
= 1440x1 − 0.1x21 + 1740x2 − 0.1x22 − 0.07x1x2 − 400,000.

Finding partial derivatives,

∂P
∂x1

= 1440− 0.2x1 − 0.07x2,
∂P
∂x2

= 1740− 0.07x1 − 0.2x2.

Setting partial derivatives to zero, we get x1 = 4736 and x2 = 7043.

To find the Hessian matrix, we compute second derivatives

∂2P
∂x21

= −0.2, ∂2P
∂x1x2

= −0.07, ∂2P
∂x22

= −0.2.

Kuang HUANG MATH3290-2023/24 12



Hence, the Hessian matrix is

H =

(
−0.2 −0.07
−0.07 −0.2

)
.

Note, it is independent of (x, y) for this example.

To find eigenvalues, we set det(H− µI) = 0, which implies

(0.2+ µ)2 − 0.072 = 0.

So,
µ = −0.2± 0.07.

Hence, all eigenvalues of H are negative.

We conclude that the point (4736, 7043) is a max.
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The gradient method

Note that, to find critical points, we need to solve a nonlinear system

fx(x∗, y∗) = 0, fy(x∗, y∗) = 0.

This may not be easy.

Method 2: the gradient method.

To motivate the idea, we recall the definition of directional
derivatives.

Let u = (u1,u2) be a unit vector. The derivative in the direction u is

∂f
∂u

(x, y) = lim
h→0+

f (x + hu1, y + hu2)− f (x, y)
h

.

Note that it is the rate of change of f in the direction u.
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From elementary calculus,

∂f
∂u

(x, y) = ∇f (x, y) · u = |∇f (x, y)| |u| cos(θ),

where θ is the angle between ∇f (x, y) and u.

Since u is a unit vector,

∂f
∂u

(x, y) = |∇f (x, y)| cos(θ).

• The change is largest when θ = 0, that is, when u has the same
direction as ∇f (x, y).

• The change is smallest (most negative) when θ = π, that is, when
u has the opposite direction as ∇f (x, y).
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The above observations suggest the following method.

Step��: initialize, choose an initial point (x0, y0).

Step��: move to a better point.

Assume that the current point is (xk, yk). How to find a point
(xk+1, yk+1) that gives a better value of f ?

• To find the max of f , we should move in the direction ∇f (xk, yk).
• To find the min of f , we should move in the direction
−∇f (xk, yk).
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• To find the max of f , we should move in the direction ∇f (xk, yk):

xk+1 = xk + λkfx(xk, yk),
yk+1 = yk + λkfy(xk, yk),

where λk > 0 is the distance traveled in the direction ∇f (xk, yk).
• To find the min of f , we should move in the direction
−∇f (xk, yk):

xk+1 = xk − λkfx(xk, yk),
yk+1 = yk − λkfy(xk, yk),

where λk > 0 is the distance traveled.

Step��: repeat until ∇f (xk, yk) is small.
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We still need to determine λk (called step size, learning rate in
Machine Learning).

Common options:

• Take λk as a constant (need to be carefully chosen).
• Using an optimal choice of λk (not always available).

For example, to find max value of f , we have

xk+1 = xk + λkfx(xk, yk),
yk+1 = yk + λkfy(xk, yk).

We then take λk such that f (xk+1, yk+1) is maximized.

We maximize g(λ) = f (xk + λfx(xk, yk), yk + λfy(xk, yk)).
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Example: minimize f (x, y) = x3 − 2x + y2.

First, we have ∇f (x, y) = (3x2 − 2, 2y). The gradient method is

xk+1 = xk − λkfx(xk, yk) = xk − λk(3x2k − 2),
yk+1 = yk − λkfy(xk, yk) = yk − λk(2yk).

Let

g(λ) = (xk − λ(3x2k − 2))3 − 2(xk − λ(3x2k − 2))− (yk − λ(2yk))2.

Then we have

g′(λ) = 3(xk − λ(3x2k − 2))2(2− 3x2k) + 2(3x2k − 2) + 2(yk − λ(2yk))(2yk).

To find the min of g(λ), we need to solve g′(λ) = 0.
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Recall

g′(λ) = 3(xk − λ(3x2k − 2))2(2− 3x2k) + 2(3x2k − 2) + 2(yk − λ(2yk))(2yk).

Suppose that the initial guess is (x0, y0) = (0, 0).

To find λ0, we set g′(λ) = 0 using the initial conditions, giving

24λ2 − 4 = 0, which implies λ =
1√
6
.

Thus, we have λ0 = 1/
√
6. Hence,

x1 = x0 − λ0fx(x0, y0) = − 2√
6
,

y1 = y0 − λ0fy(x0, y0) = 0.
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Recall

g′(λ) = 3(xk − λ(3x2k − 2))2(2− 3x2k) + 2(3x2k − 2) + 2(yk − λ(2yk))(2yk).

Next, to see if we need to continue the iteration, we check if
∇f (x1, y1) is small enough.

Note that ∇f (x1, y1) = (0, 0). So we reach the minimum.
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Type in “figure; peaks;” in Matlab

• There are multiple local minima.
• The result of gradient method depends on the initial guess.
• A convex optimization problem is preferable, where local
minimum = global minimum.
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Example: nonlinear least squares fit

x 0 π/4 π/2 3π/4 π

y 1.5 −0.8 −0.7 1.5 −0.9

0.0 0.5 1.0 1.5 2.0 2.5 3.0
−1.0

−0.5

0.0

0.5

1.0

1.5

The data set shows a periodic trend, it is reasonable to fit a periodic
function. Suppose the model function is

y = a cos(bx).

We determine the parameters a and b by the least-squares criterion.
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S(a,b) =
5∑
i=1

(
yi − a cos(bxi)

)2
.

We will minimize S by the gradient method.

Let a0 and b0 are given. Then

ak+1 = ak − λk
∂S
∂a

(ak,bk),

bk+1 = bk − λk
∂S
∂b

(ak,bk).

where

∂S
∂a

=
5∑
i=1

−2 cos(bxi)
(
yi − a cos(bxi)

)
,

∂S
∂b

=
5∑
i=1

2axi sin(bxi)
(
yi − a cos(bxi)

)
.
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We take a0 = b0 = 0.0 and λk = 0.01.

Iteration a b ∇S(a,b) S(a,b)
0 0.000 0.000 (−1.200, 0.000) 6.440
1 0.012 0.000 (−1.080, 0.000) 6.426
2 0.023 0.000 (−0.972, 0.000) 6.415
3 0.033 0.000 (−0.875, 0.000) 6.406
4 0.041 0.000 (−0.787, 0.000) 6.399
...

...
...

...
...

148 0.120 0.000 (−0.000, 0.000) 6.368
149 0.120 0.000 (−0.000, 0.000) 6.368

Hence, we have a = 0.120 and b = 0.0.
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Recall, we have a = 0.120 and b = 0.0.

0 1 2 3
−1.0

−0.5

0.0

0.5

1.0

1.5

y = a cos(bx) = 0.12

• The result is not good, it is trapped by a local minimum.
• The function value does not decrease much.
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We still take λk = 0.01. Looking at the data, it is reasonable to take

a0 = 1.5, b0 = 3.

(The data set shows almost an amplitude of 1.5 and a period of 3.)

Iteration a b ∇S(a,b) S(a,b)
0 1.500 3.000 (0.947, 5.929) 1.111
1 1.491 2.941 (0.767, 5.258) 0.772
2 1.483 2.888 (0.560, 4.620) 0.506
3 1.477 2.842 (0.353, 3.886) 0.306
4 1.474 2.803 (0.173, 3.075) 0.169
...

...
...

...
...

298 1.511 2.701 (−0.000, 0.000) 0.001
299 1.511 2.701 (−0.000, 0.000) 0.001

Hence, we have a = 1.511 and b = 2.701.
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Recall, we have a = 1.511 and b = 2.701.

0 1 2 3

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

y = a cos(bx) = 1.511 cos(2.701x)

• The result is very good, global minimum reached.
• The choice of initial guess is very important.
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Constrained optimization

We first consider problems with equality constraints.

We find X∗ in an open set S that

optimize f (X)
subject to g(X) = 0.

Roughly speaking, an open set is a region without boundary.

The region {x > 0, y > 0} is open.

��������� We must priorly know the min is not on the boundary of S.
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Method of Lagrange multiplier

Consider
optimize f (x, y),
subject to g(x, y) = 0.

Define
L(x, y, λ) = f (x, y) + λg(x, y).

If (x∗, y∗) optimizes (max or min) f and ∇g(x∗, y∗) 6= 0, then there is
λ∗ such that

Lx(x∗, y∗, λ∗) = 0, Ly(x∗, y∗, λ∗) = 0, Lλ(x∗, y∗, λ∗) = 0.

Equivalently,

fx(x∗, y∗) + λ∗gx(x∗, y∗) = 0,
fy(x∗, y∗) + λ∗gy(x∗, y∗) = 0,
g(x∗, y∗) = 0.

We can solve the above equations for x∗, y∗, and λ∗.
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Consider a point (x, y) = (x∗ + ε, y∗ + η) near (x∗, y∗). We will then
check if this point (x, y) will increase or decrease the value of f .

Note that the point (x, y) should satisfy the constraint g(x, y) = 0. So,

g(x∗ + ε, y∗ + η) = 0.

Thus, η is a function of ε (locally, by the implicit function theorem).
Write η = η(ε). Note η(0) = 0.

Let F(ε) = f (x∗ + ε, y∗ + η(ε)). Then F has a max or min at ε = 0.

• F′(0) = 0 gives the first two equations.
• It is a max if F′′(0) < 0, and it is a min if F′′(0) > 0, which
determine (x∗, y∗) is a max or min.
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How to calculate F′(0) and F′′(0)?

Take derivative for F(ε) and let ε = 0,

F′(ε) = fx(x∗ + ε, y∗ + η(ε)) + fy(x∗ + ε, y∗ + η(ε))η′(ε)

⇒F′(0) = fx(x∗, y∗) + fy(x∗, y∗)η′(0).

Take derivatives for g(x∗ + ε, y∗ + η(ε)) = 0 on both sides and let
ε = 0,

gx(x∗ + ε, y∗ + η(ε)) + gy(x∗ + ε, y∗ + η(ε))η′(ε) = 0
⇒ gx(x∗, y∗) + gy(x∗, y∗)η′(0) = 0,

from which we can solve η′(0) by gx(x∗, y∗) and gy(x∗, y∗).

Similarly,

F′′(0) = fxx(x∗, y∗)+2fxy(x∗, y∗)η′(0)+fyy(x∗, y∗)(η′(0))
2
+fy(x∗, y∗)η′′(0),

while η′′(0) can be solved from

0 = gxx(x∗, y∗)+2gxy(x∗, y∗)η′(0)+gyy(x∗, y∗)(η′(0))
2
+gy(x∗, y∗)η′′(0).
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Generalization

Consider

optimize f (x, y, z),
subject to g(x, y, z) = 0, h(x, y, z) = 0.

Define

L(x, y, z, λ, µ) = f (x, y, z) + λg(x, y, z) + µh(x, y, z).

If (x∗, y∗, z∗) optimizes f , then there are λ∗, µ∗ such that

Lx(x∗, y∗, z∗, λ∗, µ∗) = Ly(x∗, y∗, z∗, λ∗, µ∗) = Lz(x∗, y∗, z∗λ∗, µ∗) = 0,

Lλ(x∗, y∗, z∗, λ∗, µ∗) = Lµ(x∗, y∗, z∗, λ∗, µ∗) = 0.
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Generalization

Consider

optimize f (x, y, z),
subject to g(x, y, z) = 0, h(x, y, z) = 0.

Define

L(x, y, z, λ, µ) = f (x, y, z) + λg(x, y, z) + µh(x, y, z).

Equivalently,

fx(x∗, y∗, z∗) + λ∗gx(x∗, y∗, z∗) + µ∗hx(x∗, y∗, z∗) = 0,
fy(x∗, y∗, z∗) + λ∗gy(x∗, y∗, z∗) + µ∗hy(x∗, y∗, z∗) = 0,
fz(x∗, y∗, z∗) + λ∗gz(x∗, y∗, z∗) + µ∗hz(x∗, y∗, z∗) = 0,
g(x∗, y∗, z∗) = h(x∗, y∗, z∗) = 0.
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An example

Optimize f (x, y, z) = x2 + 2y − 2z2 subject to

g(x, y, z) = 2x − y = 0, h(x, y, z) = x + z − 6 = 0.

Define

L(x, y, z, λ, µ) = x2 + 2y − 2z2 + λ(2x − y) + µ(x + z − 6).

Taking derivatives:

Lx = 2x + 2λ+ µ = 0, Ly = 2− λ = 0, Lz = −4z + µ = 0,

Lλ = 2x − y = 0, Lµ = x + z − 6 = 0.

Solving it, we get
x = 14, y = 28, z = −8,

λ = 2, µ = −32.

Next, we check if this is a max or min.
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Let (x∗, y∗, z∗) = (14, 28,−8) and

x = x∗ + ε, y = y∗ + η, z = z∗ + δ.

Since (x, y, z) satisfies the constraints,

2(x∗ + ε)− (y∗ + η) = 0, (x∗ + ε) + (z∗ + δ)− 6 = 0.

We get
η = 2ε, δ = −ε.

Let
F(ε) = f (x, y, z) = (x∗ + ε)2 + 2(y∗ + 2ε)− 2(z∗ − ε)2.

Then
F′(ε) = 2(x∗ + ε) + 4+ 4(z∗ − ε),

F′′(ε) = −2.

Hence, F′′(0) < 0. So we have a max.
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Example from consumer theory

We consider a utility optimization problem.

• A consumer buys two goods, amount of commodity i is xi.
• The utility is defined as u(x1, x2) = x1x2.
• The price of commodity i is pi > 0.
• The consumer has income I.

We have the maximization problem

max u(x1, x2) = x1x2,
subject to p1x1 + p2x2 ≤ I, x1 ≥ 0, x2 ≥ 0.

Note that, we have three inequality constraints.
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Original problem:

max u(x1, x2) = x1x2,
subject to p1x1 + p2x2 ≤ I, x1 ≥ 0, x2 ≥ 0.

Sometimes, we can simplify the problem as follows. Note that

• If either x1 or x2 is zero, then u = 0;
• There exists a point in the feasible region with u > 0;
• The optimal solution does not satisfy p1x1 + p2x2 < I.

The above problem can then be formulated as

max u(x1, x2) = x1x2,
subject to p1x1 + p2x2 = I,

where the max is found in the open set {x1 > 0, x2 > 0}.
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New problem:
max u(x1, x2) = x1x2,
subject to p1x1 + p2x2 = I,

where the max is found in the open set {x1 > 0, x2 > 0}.

Now we can use the Lagrange multiplier method . Let

L(x1, x2, λ) = x1x2 + λ(I− p1x1 − p2x2).

The solution is

x1 =
I
2p1

, x2 =
I
2p2

, λ =
I

2p1p2
.
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An important remark: using the Lagrange multiplier method by
removing non-negativity constraints does not always work.

Consider the following example.

max u(x1, x2) = x1 + x2,
subject to p1x1 + p2x2 = I, x1 ≥ 0, x2 ≥ 0.

If you remove the non-negativity constraints and use the method of
Lagrange multiplier, you obtain

1− λp1 = 0,
1− λp2 = 0,

p1x1 + p2x2 = I.

This is an inconsistent system.

Thus, one needs to work with inequality constraints.
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Inequality constraints

We consider optimization problems with inequality constraints.

Find (x∗, y∗) in some open set S such that

maximize f (x, y),
subject to g(x, y) ≥ 0.

Define
L(x, y, λ) = f (x, y) + λg(x, y).

If (x∗, y∗) is the optimal solution (max), there is λ∗ such that

Lx(x∗, y∗, λ∗) = Ly(x∗, y∗, λ∗) = 0

and
Lλ(x∗, y∗, λ∗) ≥ 0, λ∗ ≥ 0, λ∗Lλ(x∗, y∗, λ∗) = 0.

This is called the Karush-Kuhn-Tucker multiplier method. The above
relations are called KKT conditions.
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An example

maximize f (x, y) = x2 − y,
subject to g(x, y) = 1− x2 − y2 ≥ 0.

Define L(x, y, λ) = x2 − y + λ(1− x2 − y2).

The conditions are

Lx = 2x − 2λx = 0, Ly = −1− 2λy = 0,

Lλ = 1− x2 − y2 ≥ 0, λ ≥ 0, λ(1− x2 − y2) = 0.

From the first equation,

2x − 2λx = 0 → x = 0 or λ = 1.
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Lx = 2x − 2λx = 0, Ly = −1− 2λy = 0,
Lλ = 1− x2 − y2 ≥ 0, λ ≥ 0, λ(1− x2 − y2) = 0.

• If λ = 1, then −1− 2λy = 0 implies y = −1/2.
Since λ = 1, the condition λ(1− x2 − y2) = 0 implies that

1− x2 − y2 = 0

giving x = ±
√
3/2. The other two conditions are satisfied.

Two solutions: (
√
3/2,−1/2, 1) and (−

√
3/2,−1/2, 1).

• If x = 0, then we must have λ > 0 otherwise −1− 2λy = 0 is a
contradiction. Then λ(1− x2 − y2) = 0 implies that

1− x2 − y2 = 0

giving y = ±1. Also, we have λ = −1/(2y).
One solution: (0,−1, 1/2).
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Recall
maximize f (x, y) = x2 − y,
subject to g(x, y) = 1− x2 − y2 ≥ 0.

Finally, comparing: f (±
√
3/2,−1/2) = 5/4 and f (0,−1) = 1.

We see that the points (±
√
3/2,−1/2) attains the max.
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Explanation of KKT condition

Recall
maximize f (x, y),
subject to g(x, y) ≥ 0.

Define
L(x, y, λ) = f (x, y) + λg(x, y).

If (x∗, y∗) is the optimal solution, there is λ∗ such that

Lx(x∗, y∗, λ∗) = Ly(x∗, y∗, λ∗) = 0

and
Lλ(x∗, y∗, λ∗) ≥ 0, λ∗ ≥ 0, λ∗Lλ(x∗, y∗, λ∗) = 0.

Note that, either g(x∗, y∗) > 0 or g(x∗, y∗) = 0.
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Case 1: g(x∗, y∗) > 0.

The problem can be formulated as: find (x∗, y∗) in the open set
defined by S ∩ {g(x, y) > 0} that

maximize f (x, y).

Then we have ∇f (x∗, y∗) = 0. The choice of λ∗ = 0 works.
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Case 2: g(x∗, y∗) = 0.

The problem can be formulated as: find (x∗, y∗) in the open set S that

maximize f (x, y),
subject to g(x, y) = 0.

The Lagrange multiplier method implies there is a λ∗ such that

Lx(x∗, y∗, λ∗) = Ly(x∗, y∗, λ∗) = Lλ(x∗, y∗, λ∗) = 0.

Four of the five KKT conditions are satisfied.
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We only need to see why λ∗ ≥ 0.

We will show that

∇f (x∗, y∗) · ∇g(x∗, y∗) ≤ 0.

From Lx(x∗, y∗, λ∗) = Ly(x∗, y∗, λ∗) = 0, we have

∇f (x∗, y∗) + λ∗∇g(x∗, y∗) = 0

Thus,
∇f (x∗, y∗) · ∇g(x∗, y∗) + λ∗|∇g(x∗, y∗)|2 = 0

This implies λ∗ ≥ 0. (We assume ∇g(x∗, y∗) 6= (0, 0), otherwise
(x∗, y∗) is a critical point of g(x, y), tricky then.)
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To show
∇f (x∗, y∗) · ∇g(x∗, y∗) ≤ 0.

Consider the directional derivative in the direction u = (u1,u2)T :

∂f
∂u

= lim
ε→0+

f (x∗ + εu1, y∗ + εu2)− f (x∗, y∗)
ε

= ∇f (x∗, y∗) · u ≤ 0

provided the point (x∗ + εu1, y∗ + εu2) lies in the feasible region. i.e.,
g(x∗ + εu1, y∗ + εu2) ≥ 0.

We can take

u = ∇g(x∗, y∗),
g(x∗ + εu1, y∗ + εu2) ≈ g(x∗, y∗) + ε∇g(x∗, y∗) · u = ε|∇g(x∗, y∗)|2,

since it is pointing into the region {x |g(x) ≥ 0}.
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Mixed constraints

Consider problems with both equality and inequality constraints.

Find (x∗, y∗) in some open set S such that

maximize f (x, y)
subject to g(x, y) = 0, and h(x, y) ≥ 0.

Define L(x, y, λ, µ) = f (x, y) + λg(x, y) + µh(x, y).

If (x∗, y∗) is the optimal solution, there is λ∗, µ∗ such that

Lx(x∗, y∗, λ∗, µ∗) = Ly(x∗, y∗, λ∗, µ∗) = 0.

For equality constraint: Lλ(x∗, y∗, λ∗, µ∗) = 0.

For inequality constraint: we have

Lµ(x∗, y∗, λ∗, µ∗) ≥ 0, µ∗ ≥ 0, µ∗Lµ(x∗, y∗, λ∗, µ∗) = 0.
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An example

Consider a problem with both equality and inequality constraints.

maximize f (x, y) = xy,
subject to x + 2y − 4 = 0 and x − 3 ≥ 0.

Define L(x, y, λ, µ) = xy + λ(x + 2y − 4) + µ(x − 3).
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An example

KKT conditions:

Lx = y + λ+ µ = 0, Ly = x + 2λ = 0, Lλ = x + 2y − 4 = 0,

Lµ = x − 3 ≥ 0, µ ≥ 0, µ(x − 3) = 0.

Note:

• λ 6= 0 (otherwise x = 0, which contradicts x ≥ 3).
• µ 6= 0 (otherwise µ = 0, solving first 3 equations yields x = 2,
which contradicts x ≥ 3).

• µ(x − 3) = 0 implies that x = 3.
• λ = −3/2, y = 1/2 and µ = 1.

Optimal solution (x∗, y∗) = (3, 1/2).
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Example: portfolio optimization

Suppose that there are n assets. You want to invest a fixed amount
of money. How do you allocate your investments?

Let xi be the portion of money invested in asset i.

Two important factors: return and risk.

• Assume µi are the average return of asset i. On average, you
have the following return

µ1x1 + µ2x2 + · · ·+ µnxn.

• Risk is typically modeled by a n× n positive definite matrix Q.
The risk is

1
2
xTQx,

where x = (x1, x2, . . . , xn)T . Risk is large if this number is big.
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Two common ways

• We find xi so that

max µ1x1 + · · ·+ µnxn −
1
2
xTQx.

(maximize return at the same time minimize risk, put weights
before return or risk if needed.)
subject to

x1 + · · ·+ xn = 1, xi ≥ 0.
• Given a fixed number R, we find xi

max− 1
2
xTQx

subject to
x1 + · · ·+ xn = 1, xi ≥ 0

and
µ1x1 + · · ·+ µnxn ≥ R.

(minimize risk, and having return of at least R.)
Kuang HUANG MATH3290-2023/24 50



Example: consider three assets, that is stocks (S), bonds (B) and
money market (M).

Assume the average returns are 10%, 8% and 6%. The risk Q is

S B M
S 2 0.5 0.01
B 0.5 1 −0.01
M 0.01 −0.01 0.1

We need a return of at least 7%. How do you allocate your money?
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Let x1, x2 and x3 be the portion of money invested in stock, bond, and
money market respectively.

The above problem can be formulated as

max − 1
2
xTQx

{
= − 1

2
(2x21 + x22 + 0.1x23 + x1x2 − 0.02x2x3 + 0.02x1x3)

}
subject to

x1 + x2 + x3 = 1, 10x1 + 8x2 + 6x3 ≥ 7, xi ≥ 0.

Let

L(x1, x2, x3, λ, µ0, µ1, µ2, µ3)

= − 1
2
(2x21 + x22 + 0.1x23 + x1x2 − 0.02x2x3 + 0.02x1x3)

+ λ(x1 + x2 + x3 − 1) + µ0(10x1 + 8x2 + 6x3 − 7)
+ µ1x1 + µ2x2 + µ3x3.
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Then, the KKT conditions are

Lx1 = −2x1 − 0.5x2 − 0.01x3 + λ+ 10µ0 + µ1 = 0, (1)
Lx2 = −0.5x1 − x2 + 0.01x3 + λ+ 8µ0 + µ2 = 0, (2)

Lx3 = −0.01x1 + 0.01x2 − 0.1x3 + λ+ 6µ0 + µ3 = 0 (3)

and
Lλ = x1 + x2 + x3 − 1 = 0 (4)

and
Lµ0 = 10x1 + 8x2 + 6x3 − 7 ≥ 0, µ0 ≥ 0, µ0Lµ0 = 0

and
Lµi = xi ≥ 0, µi ≥ 0, µixi = 0, i = 1, 2, 3.
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Case 1: 10x1 + 8x2 + 6x3 > 7.

In this case, we always have µ0 = 0.

Case 1a: assume all xi non-zero.

Then µ1 = µ2 = µ3 = 0.

Solving the equations (1)-(4),

x1 = 0.0177, x2 = 0.0887, x3 = 0.8936, λ = 0.0886.

But we have
10x1 + 8x2 + 6x3 = 6.2482 < 7.

This case will not happen.
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Case 1b: assume x1 = 0 and x2 and x3 non-zero.

Then we have µ2 = µ3 = 0.

Solving equations (2), (3) and (4),

x2 = 0.0982, x3 = 0.9018, λ = 0.0892.

Using equation (1),

µ1 = 2x1 + 0.5x2 + 0.03x3 − λ = −0.0311

This case will not happen.
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Case 1c: x2 = 0, but x1, x3 6= 0.
We have µ1 = µ3 = 0.
Solving eqs. (1), (3), (4)

x1 = 0.0433, x3 = 0.9567

and
λ = 0.0961.

Using equation (2),

µ2 = −0.084.

Case 1d: x3 = 0, but x1, x2 6= 0.
We have µ1 = µ2 = 0.
Solving eqs. (1), (2), (4)

x1 = 0.25, x3 = 0.75

and
λ = 0.875.

Using equation (3),

µ3 = −0.88.
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Case 1e: x1 = x2 = 0. Then x3 = 1 by (4), contradicts the first
assumption.

Case 1f: x1 = x3 = 0. Then x2 = 1 by (4). So, µ2 = 0.

Equation (2) implies λ = 1.

Equation (1) implies µ1 = −0.5 < 0.

Case 1g: x2 = x3 = 0. Then x1 = 1 by (4). So, µ1 = 0.

Equation (1) implies λ = 2.

Equation (2) implies µ2 = −λ+ 0.5x1 = −1.5.

Finally, we conclude that Case 1 will not happen.
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Case 2: 10x1 + 8x2 + 6x3 = 7.

Case 2a: assume all xi non-zero.

Then µ1 = µ2 = µ3 = 0.

Solving this together with the first 4 equations,

x1 = 0.1659, x2 = 0.1683, x3 = 0.6659, λ = −0.4674, µ0 = 0.0890.

Good!

Case 2b: assume x1 = 0, but x2, x3 non-zero.

Solving equations (2), (3) and (4),

x2 = 0.5, x3 = 0.5, λ = −1.305, µ0 = 0.225.

Equation (1) gives µ1 = −0.69. Wrong!
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Case 2c: assume x2 = 0, but x1, x3 non-zero.

Solving equations (1), (3) and (4),

x1 = 0.25, x3 = 0.75, λ = −0.5675, µ0 = 0.1075.

From equation (2), we have µ2 = −0.175. Wrong!

Case 2d: assume x3 = 0, but x1, x2 non-zero.

Solving equations (1), (2) and (4),

x1 = −0.5 < 0.

Case 2e: x2 = x3 = 0, x1 6= 0, …

Case 2f: x1 = x3 = 0, x2 6= 0, …

Case 2g: x1 = x2 = 0, x3 6= 0, …
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We see that all KKT conditions are satisfied for Case 2a.

In conclusion, the solution is:

• invest 16.59% of your money in stocks;
• invest 16.83% of your money in bonds;
• invest 66.59% of your money in money markets;
• your return is 7%;
• the risk is 0.0778.
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More words about optimization

• Optimization is not solely an applied math subject.
• Even with today’s computing power, solving nonlinear
optimization is still a challenge in many areas.

• General algorithms for nonlinear optimization may not be good,
background knowledge is crucial.
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Disclaimer

All figures, tables, and data appearing in the slides are only used for
teaching under guidelines of Fair Use.
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