- Department of


## MATH 3290 Mathematical Modeling

Chapter 12: Modeling with Systems of Differential Equations

Kuang HUANG
April 3, 2024
Department of Mathematics
The Chinese University of Hong Kong

## Course webpage

https://www.math.cuhk.edu.hk/course/2324/math3290


## SCAN ME

## Introduction

We will discuss modeling with a system of differential equations. Here, a system can model interactions among variables.

Note: Since analytical solutions cannot be found easily, we will discuss the qualitative behaviors of the solution by the graphical method. We will also introduce a numerical approximation method.

## Graphical solutions

Consider the following system of differential equations

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=f(x, y), \quad \frac{\mathrm{d} y}{\mathrm{~d} t}=g(x, y) .
$$

The solutions are $x(t)$ and $y(t)$.
We interpret the solution is the position $(x(t), y(t))$ of a particle at time $t$. The $x y$-plane is called the phase plane.
As $t$ varies, $(x(t), y(t))$ defines a path (or trajectory or orbit) in the phase plane.

The particle moves in the phase plane in the direction of increasing $t$.

Recall

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=f(x, y), \quad \frac{\mathrm{d} y}{\mathrm{~d} t}=g(x, y) .
$$

An equilibrium point (EP) $\left(x_{0}, y_{0}\right)$ is a point for which $\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} t}=0$. That is,

$$
f\left(x_{0}, y_{0}\right)=0, \quad g\left(x_{0}, y_{0}\right)=0 .
$$

Stability of equilibrium point (EP): we say $\left(x_{0}, y_{0}\right)$ is

- stable if any path starts close to the point remains close for all future time;
- asymptotically stable if it is stable and the path approaches to the point as $t$ tends to infinity;
- unstable if it is not stable.

An example: Consider

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=-x+y, \quad \frac{\mathrm{~d} y}{\mathrm{~d} t}=-x-y .
$$

It is easy to check that a solution

$$
x(t)=e^{-t} \sin t, \quad y(t)=e^{-t} \cos t .
$$

The illustration shows that

- a path with the initial position ( $x_{0}, y_{0}$ );
- the particle moves in the direction of increasing $t$;
- $(0,0)$ is an asymptotically stable equilibrium point (EP).



## Lorenz system

The Lorenz system:

$$
\begin{aligned}
& \frac{\mathrm{d} x}{\mathrm{~d} t}=\sigma(y-x) \\
& \frac{\mathrm{d} y}{\mathrm{~d} t}=x(\rho-z)-y \\
& \frac{\mathrm{~d} z}{\mathrm{~d} t}=x y-\beta z .
\end{aligned}
$$

Note $\sigma, \rho$ and $\beta$ are parameters.


A trajectory of the Lorenz system.

- If $\rho<1$, there exists one and only one asymptotically stable equilibrium point.
- If $\rho=28, \sigma=10$, and $\beta=8 / 3$, the Lorenz system has chaotic solutions.


## A competitive hunter model

Suppose there are two types of fish-trout and bass.


Bass

## A competitive hunter model

Suppose there are two types of fish-trout and bass.
We build a model to describe the interaction of them. We assume that they compete for some limited resources, say food.

Let $x(t)$ and $y(t)$ be the populations of trout and bass, respectively.
Assumption 1: without the existence of bass, trout will grow without limit, so we propose the following model

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=a x, \quad a>0 .
$$

It says that the rate of change of trout population is proportional to its population.

Assumption 2: when bass exists, they will limit the growth of trout because the two species will compete for food.

We model the decrease in the population by the product of $x$ and $y$, so we propose the following model

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=a x-b x y, \quad b>0
$$

Following the same reasoning, we propose the following model for the rate of change of bass population

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=m y-n x y, \quad m, n>0 .
$$

## Graphical analysis

The model is

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=x(a-b y), \quad \frac{\mathrm{d} y}{\mathrm{~d} t}=(m-n x) y .
$$

We will look at the phase plane.
Step 1 : locate the equilibrium points (EPs),

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} t}=0, \quad \Rightarrow \quad x(a-b y)=0,(m-n x) y=0
$$

Thus, there are 2 equilibrium points ( $E P s$ ): $(0,0)$ and $(m / n, a / b)$.
Step 2: draw the lines where $\mathrm{d} x / \mathrm{d} t=0$ or $\mathrm{d} y / \mathrm{d} t=0$.
Note: $\mathrm{d} x / \mathrm{d} t=0$ when $x=0$ or $\mathrm{y}=a / b$, and $\mathrm{d} y / \mathrm{d} t=0$ when $\mathrm{y}=0$ or $x=m / n$.

The above information are shown in the following figures.




## Recall:

$\mathrm{d} x / \mathrm{d} t=0$ when $x=0$ or $y=a / b$, and $\mathrm{d} y / \mathrm{dt}=0$ when $\mathrm{y}=0$ or $x=m / n$. The lines divide the phase plane into 4 regions.

Step 3 : determine movement of the particle in each region. First, look at the lines where $\mathrm{d} x / \mathrm{d} t=0$ or $\mathrm{d} y / \mathrm{d} t=0$ again.

- The line $x=m / n$ is shown.
- On the left, $x<m / n$, so $\mathrm{d} y / \mathrm{d} t=(m-n x) y>0$, thus the particle always moves up.
- On the right, $x>m / n$, so $\mathrm{d} y / \mathrm{d} t=(m-n x) y<0$, thus the particle always moves down.


The line of $\mathrm{d} y / \mathrm{dt}=0$

- The line $y=a / b$ is shown.
- In the lower region, $y<a / b$, so $\mathrm{d} x / \mathrm{d} t=x(a-b y)>0$, thus the particle always moves to the right.
- In the upper region, $y>a / b$, so $\mathrm{d} x / \mathrm{dt}=x(a-b y)<0$, thus the particle always moves to the left.


The line of $d x / d t=0$

Combining the above analysis, we obtain the following figure.


Step 4 : determine stability of equilibrium points (EPS).
Consider the point $(0,0)$ :

- if the particle starts near $(0,0)$, which is in region C,
- clearly, the particle will move away from ( 0,0 ).
- $(0,0)$ is unstable.


Stability of the other equilibrium point (EP).
Consider the point ( $m / n, a / b$ ):

- if the particle starts near $(m / n, a / b)$, and in region $D$,
- clearly, the particle will move away from ( $m / n, a / b$ ).
- $(m / n, a / b)$ is unstable.


Step 5 : model interpretation.

- $(m / n, a / b)$ is unstable, thus co-existence is impossible.
- the initial condition is crucial to the outcome:
- if starts in region A, bass dominates;
- if starts in region D, trout dominates;
- if starts in regions B or C, either
 can happen.


Program for 2D phase plots: pplane. You can download it from https://www.cs.unm.edu/~joel/dfield/ (You need Java Runtime Environment to run it).

## A predator-prey model

Suppose there are two types of species-whale and krill.


Whale and krill

## A predator-prey model

Suppose there are two types of species-whale and krill.
We build a model to describe the interaction of them. We assume that whales eat the krill.

Let $x(t)$ and $y(t)$ be the populations of krill and whales, respectively.
Assumption 1: without the existence of whales, krill will grow without limit, so we propose the following model

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=a x, \quad a>0
$$

It says that the rate of change of krill population is proportional to its population.

Assumption 2: when whales exist, they will limit the growth of krill because whales will eat krill.

We model the decrease in the population by the product of $x$ and $y$, so we propose the following model

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=a x-b x y, \quad b>0 .
$$

That is

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=x(a-b y) .
$$

Assumption 3: without the existence of krill, the population of whales will decline, so we propose the following model

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=-m y, \quad m>0 .
$$

It says that the rate of decay of the whale population is proportional to its population.

Assumption 4: when krill exist, they will provide foods to whales, and this will increase the whale population.
We model the increase in the population by the product of $x$ and $y$, so we propose the following model

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=-m y+n x y, \quad n>0 .
$$

## Graphical analysis

The model is

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=x(a-b y), \quad \frac{\mathrm{d} y}{\mathrm{~d} t}=(-m+n x) y .
$$

We will look at the phase plane.
Step 1 : locate the equilibrium points (EPs),

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} t}=0, \quad \Rightarrow \quad x(a-b y)=0,(-m+n x) y=0
$$

Thus, there are 2 equilibrium points ( $E P s$ ): $(0,0)$ and $(m / n, a / b)$.
Step 2: draw the lines where $\mathrm{d} x / \mathrm{d} t=0$ or $\mathrm{d} y / \mathrm{d} t=0$.
Note: $\mathrm{d} x / \mathrm{d} t=0$ when $x=0$ or $\mathrm{y}=a / b$, and $\mathrm{d} y / \mathrm{d} t=0$ when $\mathrm{y}=0$ or $x=m / n$. These lines divide the phase plane into four regions.

Step 3 : determine movement of the particle in each region.

- On the left, $x<m / n$, so dy/dt $<0$, and the particle moves down.
- On the right, $x>m / n$, so $\mathrm{dy} / \mathrm{dt}>0$, and the particle moves up.
- In the lower region, $y<a / b$, so $\mathrm{d} x / \mathrm{dt}>0$, particle moves to right.
- In the upper region, $y>a / b$, so $\mathrm{d} x / \mathrm{dt}<0$, particle moves to left.


Hence, we obtain the following phase plane.


Step 4 : determine stability of equilibrium points (EPS),
From above, it is clear that $(0,0)$ is unstable.
The stability of $(\mathrm{m} / \mathrm{n}, \mathrm{a} / \mathrm{b})$ is not clear. Looks like the phase lines rotate anticlockwise around it.

We present further mathematical analysis for $(m / n, a / b)$.
Recall that the model is

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=x(a-b y), \quad \frac{\mathrm{d} y}{\mathrm{~d} t}=(-m+n x) y .
$$

We find a relation of $x$ and $y$ (i.e., a curve in the phase plane).
By the chain rule and the inverse function theorem

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \frac{\mathrm{~d} t}{\mathrm{~d} x}=\frac{\mathrm{d} y / \mathrm{d} t}{\mathrm{~d} x / \mathrm{d} t} .
$$

Thus,

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{(-m+n x) y}{x(a-b y)}
$$

We separate the variables,

$$
\left(\frac{a}{y}-b\right) \mathrm{d} y=\left(n-\frac{m}{x}\right) \mathrm{d} x .
$$

Integrate both sides

$$
\int\left(\frac{a}{y}-b\right) \mathrm{d} y=\int\left(n-\frac{m}{x}\right) \mathrm{d} x .
$$

So,

$$
a \ln y-b y=n x-m \ln x+k_{1}, \quad k_{1} \text { is a constant. }
$$

Finally, we have

$$
\frac{y^{a}}{e^{b y}}=K \frac{e^{n x}}{x^{m}}, \quad K \text { is a constant } .
$$

Recall

$$
\frac{y^{a}}{e^{b y}}=K \frac{e^{n x}}{x^{m}}
$$

Let $f(y)=y^{a} e^{-b y}$ and $g(x)=x^{m} e^{-n x}$. Then we have

$$
f(y) g(x)=K
$$

Note this K should be determined by the initial condition ( $x(0), y(0)$ ), different $K$ implies different phase lines.

We first state some properties of $f(y)$ and $g(x)$ :

- $f(0)=0$ and $g(0)=0 ;$
- $f$ and $g$ tends to zero as $y$ and $x$ tends to infinity;
- $f$ has a local(global) maximum at $y=a / b, g$ has a local(global) maximum at $x=m / n$.

We have the following sketch for $f(y)$ and $g(x)$



Here, $M_{y}$ is the maximum value of $f(y)$, and $M_{x}$ is the maximum value of $g(x)$.

Now, we look at the equation $f(y) g(x)=K$.
We consider three cases: $K>M_{y} M_{x}, K=M_{y} M_{x}$ and $K<M_{y} M_{x}$.
Case 1: $K>M_{y} M_{x}$.
Clearly, the equation $f(y) g(x)=K$ has no solution.
Case 2: $K=M_{y} M_{x}$.
Clearly, the equation $f(y) g(x)=K$ has exactly one solution, which is $x=m / n$ and $y=a / b$. This is just the equilibrium point $(m / n, a / b)$.

Case 3: $K<M_{y} M_{x}$.
We write $K=s M_{y}$ and $s<M_{x}$. The equation $g(x)=s$ has two solutions, $x=x_{m}$ and $x=x_{M}$.


Recall, we are looking at the solution of $f(y) g(x)=K$.
Case 3a: if $x<x_{m}$ or $x>x_{M}$, we have $g(x)<s$ and

$$
f(y)=K / g(x)=\left(s M_{y}\right) / g(x)>M_{y}, \quad \text { since } g(x)<s .
$$

Hence, no solution.
Case 3b: if $x=x_{m}$ or $x=x_{M}$, we have $g(x)=s$ and

$$
f(y)=K / g(x)=\left(s M_{y}\right) / s=M_{y} .
$$

Hence, two solutions $\left(x_{m}, a / b\right)$ and $\left(x_{M}, a / b\right)$.

Case 3c: if $x_{m}<x<x_{M}$, we have $g(x)>s$ and

$$
f(y)=K / g(x)=\left(s M_{y}\right) / g(x)<M_{y}, \quad \text { since } g(x)>s
$$

Thus, we are able to find two solutions $\left(x, y_{1}(x)\right)$ and $\left(x, y_{2}(x)\right)$, where $x_{m}<x<x_{M}$.


Combining all the above discussions, we see that the trajectories are periodic near ( $m / n, a / b$ ).



Phase lines from pplane

Step 5 : model interpretation.

- Co-existence of whales and krill are possible, the point $(m / n, a / b)$ is stable.
- If starts at a point in $x<m / n$ and $y>a / b(E P)$, both populations will decrease.
- Similar for the other three cases.
- The two populations fluctuate between their maximum and minimum values.



## Effects of harvesting

Recall the model for whales and krill population is

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=x(a-b y), \quad \frac{\mathrm{d} y}{\mathrm{~d} t}=(-m+n x) y .
$$

Let $T$ be the time of one complete cycle.
We define the average levels over the cycle by

$$
\bar{x}=\frac{1}{T} \int_{0}^{T} x(t) \mathrm{d} t, \quad \bar{y}=\frac{1}{T} \int_{0}^{T} y(t) \mathrm{d} t .
$$

We should have $x(0)=x(T)$ and $y(0)=y(T)$.
From the first differential equation

$$
\frac{1}{x} \frac{\mathrm{~d} x}{\mathrm{~d} t}=a-b y .
$$

Integrating with respect to $t$, then

$$
\begin{aligned}
& \int_{0}^{T} \frac{1}{x} \frac{\mathrm{~d} x}{\mathrm{~d} t} \mathrm{~d} t=\int_{0}^{T}(a-b y) \mathrm{d} t \\
\Rightarrow & \int_{0}^{T} \frac{\mathrm{~d}}{\mathrm{~d} t}(\ln x(t)) \mathrm{d} t=a T-b T \bar{y} \\
\Rightarrow & \ln x(T)-\ln x(0)=a T-b T \bar{y} .
\end{aligned}
$$

Since $x(T)=x(0)$, we have

$$
\bar{y}=\frac{a}{b} .
$$

By the similar techniques, we have

$$
\bar{x}=\frac{m}{n} .
$$

Hence, the average levels are exact the equilibrium points.

We assume that the fishing of krill will decrease its population at a rate $r x(t)$.

Since there is less food for whales, its population will also decrease at a rate $r y(t)$.

We have the new model

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=x((a-r)-b y), \quad \frac{\mathrm{d} y}{\mathrm{~d} t}=(-(m+r)+n x) y .
$$

Using the same steps, the new average levels are

$$
\bar{x}=\frac{m+r}{n}, \quad \bar{y}=\frac{a-r}{b} .
$$

We see that, fishing of krill will actually increase the average level of krill, and decrease the average level of whales.

This is known as Volterra's principle.

## An arms race

Consider two countries engaged in an arms race.
Let $x(t)$ be annual defense expenditure for Country 1 and $y(t)$ be annual defense expenditure for Country 2.
Assumption 1: the expenditure decreases at a rate proportional to the current expenditure

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=-a x, \quad a>0 .
$$

Assumption 2: the increase in expenditure is proportional to the amount spend by the other country

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=-a x+b y, \quad b>0
$$

Assumption 3: even if the defense expenditure for both countries are zero, Country 1 still needs to increase its defense expenditure because of possible future action of Country 2

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=-a x+b y+c, \quad c>0
$$

By a similar argument, we propose the following model

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=m x-n y+p,
$$

where $m, n$ and $p>0$.

Recall that the model is

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=-a x+b y+c, \quad \frac{\mathrm{~d} y}{\mathrm{~d} t}=m x-n y+p .
$$

Step 1 : locate the equilibrium points (EPs),

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} t}=0, \quad \Rightarrow \quad-a x+b y+c=0, m x-n y+p=0
$$

Solving, the only equilibrium point $(E P)(X, Y)$ is

$$
X=\frac{b p+c n}{a n-b m}, \quad Y=\frac{a p+c m}{a n-b m} .
$$

We need to assume that $a n-b m>0$ so that $X, Y>0$.

Step 2: draw the lines where $\mathrm{d} x / \mathrm{d} t=0$ or $\mathrm{d} y / \mathrm{d} t=0$. The two lines are $y=\frac{1}{b}(a x-c)$ and $y=\frac{1}{n}(m x+p)$.


The two lines divide the phase plane into 4 regions.
(Note that $a / b>m / n$ by our assumption.)

Step 3: determine movement of the particle in each region.

- Region A:

$$
y>\frac{1}{b}(a x-c), y>\frac{1}{n}(m x+p),
$$

so, $\mathrm{d} x / \mathrm{d} t>0$ and $\mathrm{dy} / \mathrm{d} t<0$.

- Region B:

$$
y<\frac{1}{b}(a x-c), y>\frac{1}{n}(m x+p)
$$


so, $\mathrm{d} x / \mathrm{d} t<0$ and $\mathrm{d} y / \mathrm{d} t<0$.

- Region C:

$$
y>\frac{1}{b}(a x-c), y<\frac{1}{n}(m x+p),
$$

so, $\mathrm{d} x / \mathrm{d} t>0$ and $\mathrm{d} y / \mathrm{dt}>0$.

- Region D:

$$
y<\frac{1}{b}(a x-c), y<\frac{1}{n}(m x+p)
$$


so, $\mathrm{d} x / \mathrm{d} t<0$ and $\mathrm{d} y / \mathrm{d} t>0$.

Combining the above.

- A: $\mathrm{d} x / \mathrm{d} t>0$ and $\mathrm{d} y / \mathrm{d} t<0$.
- B: $\mathrm{d} x / \mathrm{d} t<0$ and $\mathrm{d} y / \mathrm{d} t<0$.
- C: $\mathrm{d} x / \mathrm{d} t>0$ and $\mathrm{d} y / \mathrm{d} t>0$.
- $\mathrm{D}: \mathrm{d} x / \mathrm{d} t<0$ and $\mathrm{d} y / \mathrm{d} t>0$.


Steps 4 and 5 : stability of equilibrium points (EPS), model interpretation.

We see that $(X, Y)$ is asymptotically stable. In the long run, the expenditure for Countries 1 and 2 are $X$ and $Y$.

## Euler's method

Consider the system of differential equations

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=f(t, x, y) \quad \frac{\mathrm{d} y}{\mathrm{~d} t}=g(t, x, y)
$$

with initial conditions

$$
x\left(t_{0}\right)=x_{0}, \quad y\left(t_{0}\right)=y_{0} .
$$

We use the Euler's method to find an approximate solution for $t \geq t_{0}$.
Idea: similar to the case with one differential equation, we approximate the solution values by the values of tangent lines.

The tangent line at the point $\left(t_{0}, x_{0}\right)$ is

$$
T(t)=x_{0}+\frac{\mathrm{d} x}{\mathrm{~d} t}\left(\mathrm{t}_{0}\right)\left(t-t_{0}\right) .
$$

By the system, we have

$$
T(t)=x_{0}+f\left(t_{0}, x_{0}, y_{0}\right)\left(t-t_{0}\right)
$$

Let $t_{1}=t_{0}+\Delta t$. Then we can use the value $T\left(t_{1}\right)$ :

$$
x_{1}=x_{0}+f\left(t_{0}, x_{0}, y_{0}\right) \Delta t
$$

as an approximation of $x\left(t_{1}\right)$.

Similarly, the tangent line at the point $\left(t_{0}, y_{0}\right)$ is

$$
S(t)=y_{0}+\frac{d y}{d t}\left(t_{0}\right)\left(t-t_{0}\right) .
$$

By the system, we have

$$
S(t)=y_{0}+g\left(t_{0}, x_{0}, y_{0}\right)\left(t-t_{0}\right) .
$$

Let $t_{1}=t_{0}+\Delta t$. Then we can use the value $S\left(t_{1}\right)$ :

$$
y_{1}=y_{0}+g\left(t_{0}, x_{0}, y_{0}\right) \Delta t
$$

as an approximation of $y\left(t_{1}\right)$.
Combining the above calculations,

$$
\begin{aligned}
& x_{1}=x_{0}+f\left(t_{0}, x_{0}, y_{0}\right) \Delta t, \\
& y_{1}=y_{0}+g\left(t_{0}, x_{0}, y_{0}\right) \Delta t .
\end{aligned}
$$

In general, we let

$$
t_{n}=t_{0}+n \Delta t
$$

and let

$$
\begin{aligned}
& x_{n}=\text { approximation of } x\left(t_{n}\right), \\
& y_{n}=\text { approximation of } y\left(t_{n}\right) .
\end{aligned}
$$

The above shows that we can find $x_{n}, y_{n}$ by

## Euler's method

$$
\begin{aligned}
& x_{n+1}=x_{n}+f\left(t_{n}, x_{n}, y_{n}\right) \Delta t, \\
& y_{n+1}=y_{n}+g\left(t_{n}, x_{n}, y_{n}\right) \Delta t .
\end{aligned}
$$

## Example: competitive hunter model (refined)

Suppose there are two types of fish: trout and bass.
We build a model to describe the interaction of them. We assume that they compete for some limited resources, say food.

Let $x(t)$ and $y(t)$ be the population of trout and bass, respectively.
Assumption 1: without the existence of bass, trout will grow with limit, so we propose the following model

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=a x(M-x), \quad a, M>0
$$

Assumption 2: when bass exists, they will limit the growth of trout because the two species will compete for food.

We model the decrease in the population by the product of $x$ and $y$, so we propose the following model

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=a x(M-x)-b x y, \quad b>0 .
$$

Following the same reasoning, we propose the following model for the rate of change of bass population

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=m y(N-y)-n x y, \quad m, n, N>0 .
$$

Specifically, we consider

$$
\begin{aligned}
& \frac{d x}{d t}=x(10-x-y) \\
& \frac{d y}{d t}=y(15-x-3 y) .
\end{aligned}
$$

Suppose that, initially, $x(0)=5$ and $y(0)=2$.
We use the Euler's method to predict the long term behavior.
We will compute the solution for $0 \leq t \leq 7$ with $\Delta t=0.1$. So, we need to perform 70 iterations.

Step $0: x_{0}=5$ and $y_{0}=2$.
Step 1 :

$$
\begin{aligned}
& x_{1}=x_{0}+f\left(t_{0}, x_{0}, y_{0}\right) \Delta t=5+0.1 x_{0}\left(10-x_{0}-y_{0}\right)=6.5 \\
& y_{1}=y_{0}+g\left(t_{0}, x_{0}, y_{0}\right) \Delta t=2+0.1 y_{0}\left(15-x_{0}-3 y_{0}\right)=2.8
\end{aligned}
$$

Note that $x_{1}, y_{1}$ are approximate values of $x(0.1)$ and $y(0.1)$.
Step 2:

$$
\begin{aligned}
& x_{2}=x_{1}+f\left(t_{1}, x_{1}, y_{1}\right) \Delta t=6.5+0.1 x_{1}\left(10-x_{1}-y_{1}\right)=6.955 \\
& y_{2}=y_{1}+g\left(t_{1}, x_{1}, y_{1}\right) \Delta t=2.8+0.1 y_{1}\left(15-x_{1}-3 y_{1}\right)=2.828
\end{aligned}
$$

Note that $x_{2}, y_{2}$ are approximate values of $x(0.2)$ and $y(0.2)$.

## Continue until Step 70.

We can plot the approximate values against time:


We see that the solutions converge to the equilibrium value $(7.5,2.5)$.


Phase lines from pplane

## Disclaimer

All figures, tables, and data appearing in the slides are only used for teaching under guidelines of Fair Use.

