DEPARTMENT OF
ATHEMATICS
THE CHINESE UNIVERSITY OF HONG KONG

MATH 3290 Mathematical Modeling
Chapter 11: Modeling with a Differential Equation

Kuang HUANG
March 18, 2024

Department of Mathematics
The Chinese University of Hong Kong



Course webpage

https://www.math.cuhk.edu.hk/course/2324/math3290



https://www.math.cuhk.edu.hk/course/2324/math3290

Midterm report

- There are 31 answer sheets collected with 2 students absent.
- Nine achieved the full score 35, with the average score 30.58.
- Solutions will be released later.

- Keep up the great work!
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Future arrangements

- The second assignment has been released. Due: 5pm, April 2nd.

- The final assignment will be released next week, possibly due by
April 16th.
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Introduction

- We discuss modeling with a differential equation.

- A differential equation is an equation relating a quantity of
interest and its derivatives.

- Derivatives represent instantaneous rates of change of a
quantity.

- Differential equations model quantities that change

continuously in time, e.g.,, populations, concentration of
chemicals.

- In contrast, difference equations model quantities that change
in discrete time intervals.
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Population growth

Kuang H

Suppose that the population at time t = t; is known, Pg.
We want to predict the future population P(t), t > to.

Let k be the percentage growth per unit time and assume R is a
constant.

Then, from time t to t + At,
P(t + At) — P(t)

0] = RAL.
Thus,
P(t + At) — P(t)
——— 2 = RP(1).
e (t)
If At is very small, we have
dpP
— = kP.
dt

Moreover, we have P(ty) = Po.
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The model is
dp

=
To find P, we separate the variables

kP, P(to) = Po.
dp
- = kat.

Integrate both sides

/% dP:/l? dt = InP=*ht+C.

Use the condition P(ty) = Py to determine C,
|nP0:kt0—‘rC = C:|nPo—kt0.
Finally, we have InP = kt + C = kt + In Py — Rtg,

P(t) = Poek(t=)  exponential growth.
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The percentage growth rate per unit time k should not be a constant.

One choice of k (due to a mathematician P. F. Verhulst) is
R(t) = r(M — P(t)), r>o0.

This suggests that the growth rate should be small when the
population reaches the maximum population M.

Hence, the model becomes

P(t + At) — P(t)

=5 = r(M — P)At.

Thus
P(t + At) — P(t)

v = rP(M — P).
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When At is sufficiently small, we have

dp

= rP(M - P).
= )

This is called the logistic model.
To find the solution, we separate the variables

dp

PV —P) =rdt.

Using partial fractions, we have
1 A n 1

PM—P) MA\P M-P/)’

The differential equations become

1
fdP —— dP =rMdt.
+/V|—
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Recall that

1
EdP—F WdP—fMdt

Integrate both sides,

/ dP—|—/7dP /ert.

Assuming P > 0 and P < M, we have
InP—In(M—P)=rMt+C.
Using the initial condition P(tg) = Py to determine C,
InPy — In(M — Py) = rMty + C.
Consequently,

InP — In(M — P) = rMt + (In Py — In(M — Pg) — rMto).
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Recall that

InP — In(M — P) = rMt + (In P — In(M — Pg) — rMto)..

Solving for P, we have

MPq
Po + (M = Po)e_rM(t_to) ’

P(t) =

This gives a formula for finding P at any time t.
Remarks:
- We see that P(t) - M ast — oo.

- Usually we assume M is given.

- To find the model parameter r > 0, we plot In =
the slope of the line is rM.
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Consider the following data. We take M = 665.

Percent
error

Observed yeast Biomass calculated from
Time (hr) biomass logistic equation (11.13)
0 9.6 8.9
1 18.3 153
2 29.0 26.0
3 472 438
4 711 725
5 119.1 1163
6 174.6 178.7
7 2573 258.7
8 350.7 3489
9 441.0 436.7
10 5133 5109
11 559.7 566.4
12 594.8 604.3
13 629.4 628.6
14 640.8 643.5
15 651.1 6524
16 655.9 657.7
17 659.6 660.8
18 661.8 662.5

We plot In
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against t, the slope is rm.

The value of rM can be obtained by the least squares method. We

have r = 8.
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How to determine Py?

- Use the original data point, that is Py = 9.6 from the table.
- Recall that

P Po

From the least squares method, we could obtain a linear model

P
| ~ Rk
n(M—P) t+ C,

and we can hence solve Py by

Po
C—|n(MP0> — rMty.

Those two options should produce similar results.
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MPy
Po + (M _ po)e—o.SS(t—to)'

Hence, the model is P(t) =

Observed yeast  Biomass calculated from  Percent »

Time (hr) biomass logistic equation (11.13) error

0 26 8.9 -7.3

1 18.3 153 —16.4

2 29.0 26.0 -103

3 472 4338 -72

4 711 725 20 £

5 19.1 116.3 —2.4 =

6 1746 178.7 23 g

7 257.3 258.7 05 g

8 350.7 3489 —0.5 £

9 441.0 436.7 -1.0

10 5133 510.9 —47

11 559.7 566.4 12

12 594.8 604.3 16

13 629.4 628.6 —0.1

14 640.8 643.5 04

15 651.1 6524 02 o R

16 655.9 657.7 0.3 01 23 45 6 7 8 910111213 141516 17 18

17 659.6 660.8 02 Time in hours

18 661.8 662.5 0.1

The model fits the data very well.
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Example: Drug dosage

We combine differential and difference equations in a model.

Q: How can the doses and the time between doses be adjusted to
maintain a safe but effective concentration of drug?

Assumption 1: decay of drug.

Let C(t) be the concentration of the drug. Then we assume

ac

& ke
dt ’

where k > 0 is the decay rate. We will obtain a differential equation
model.

Assumption 2: constant dosage.

A dose of Cy is added at fixed time intervals of length T. We will

obtain a difference equation model
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An illustration of C as a function of time t:

C

Cy=Cy+ Cpe*T

Some notations:

- Ry, is the residual after n doses, before the next dose,
- C, is the residual after n + 1 doses.
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We see that Ry = Coe™ .

Then a dosage of Cy is added, we have

CG=C+R=0C+ Coe_kT.
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Then at time 2T, the residual is
R2 _ quikT _ Co(eff?T + efﬂeT).
Then a dosage of Cy is added

Co=Co+Ry=Co(1+e T +e ).
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Continuing the above process, at time nT,

Rn = Coe (14 e 4 ... 4 e~ ("=DKT),

That is o
T—e"
kT
Rn = Coe ﬂ
We see that, in the long run (n — oo):
1— e—nl?T C
T —RT o 0
R_nan;oCOe 1—e—RT = kT _1°

Recall:

- Cp is the constant dosage level;
- Tis the time interval;
- R it the concentration of drug in the long run.
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Assume the drug is ineffective if the concentration is below L, and
harmful if above H.

We set R = L (in the long run, the concentration is L), and Co = H — L.
Then

Co
R= el?T_1
becomes
H—-L
L= ekT —1
Solving, we have
17 H
T=—In—
PR

which gives guidance of how much (Co = H — L) and when (T = { In £)

one should take the drug.
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Graphical methods

Most differential equations cannot be solved easily.
Graphical method gives a sketch of the solution.

The following information could be derived from the sketch:

1. equilibrium points (EPs) (points at which the derivative is zero),
2. signs of the first order derivative (increase/decrease),

3. signs of the second order derivative (convex/concave).

To obtain the above information, a phase line is helpful.
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Drawing a phase line

Consider the equation

dy
- = VN -2).

Step ED: locate the equilibrium points (EPs),

& _

=0 — +Ny-2=o

Hence, the equilibrium points (EPs) arey = —1and y = 2.

We indicate this in the phase line:

® : y
-1



Recall the equation

dy
o = VN -2).

Step B3: determine the sign of y'.

|
|
|
y'>0 y'<0 | y'>0
C, y
2

I
I
I
|
@)
&
-1

We also put arrows (left > decrease, right - increase) to indicate
how the value of y change.

A
©®
Y
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Recall the equation
dy
T v+ -2).

Step EJ: determine the sign of y”

d’y B dy dy
2 = VN =2 =@ =N+ -2).

Indicate the sign information in the phase line.

y'>0

: y'<0 : y'<0 : y'>0
y'<0 : y'>0 : y'<0 : y'>0
A - | g ¢ 4 | A" -. v
»~ Y T Ll
1 2
2
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y'>0 : y'<0 : y'<0 : y'>0
y'<0 : y'>0 : y'<0 : y'>0
A - | g Py 4 | - y
»~ Y Y L
-1 1 2
2

Step E3: sketch the solution using information from phase line.

we observe
- fory < —1, the function is increasing, slope is decreasing;
- for —1 <y < 1/2, the function is decreasing, slope is increasing;
- for1/2 <y < 2, the function is decreasing, slope is decreasing;

- fory > 2, the function is increasing, slope is increasing.
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Then we get the following sketch:

A useful program for phase plots: dfield. You can download it from
https://www.cs.unm.edu/~joel/dfield/ (You need Java
Runtime Environment to run it).
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https://www.cs.unm.edu/~joel/dfield/

Stable and unstable equilibrium

Let y* be an equilibrium point (EP).

- Itis a stable equilibrium point (EP) if the solution starts at a
point close to y*, then the solution for all future time remains
close to y* (e.g., pendulum).

- Itis an asymptotic stable equilibrium point (EP) if the solution
starts at a point close to y*, then the solution converges to y*.

- Itis an unstable equilibrium point (EP) if the solution starts at a
point close to y*, then the solution moves away from y*.
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Example: for the differential equation

dy
o v+ —2).

Recall that the phase line is

y'>0 : y'<0 : y'<0 : y'>0
y'<0 : y'>0 : y'<0 : y'>0
A - 1 A é <l 1 A - v
»~ - - »~
-1 1 2
2
We see that

- y = —1is an asymptotic stable equilibrium point (EP),
- y =2isan unstable equilibrium point (EP).
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Another example: consider the logistic equation

dp
= —rPM-P r,M> 0.
dt ( )7 ? >

Equilibrium pointsare P=0and P = M.

Moreover, we have
d’p dpP
— =r(M—-2P)—.
dt? ( ) dt

We see that

+ PP>0when0 <P <M and P/ < 0whenP > M:;

- P” > 0whenM — 2P and P’ have the same sign, and P” < 0
otherwise.
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We have the following phase line.

L ‘Z_I:d)
| 2 a 2 : 2
I d°P I d°P I d°P
L oar? 0: t2<0: drz>0
P
M M
2

From the phase line, we see that

- P=0isan unstable equilibrium point (EP),

- P = Mis an asymptotic stable equilibrium point (EP).
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dpP

diP >0 E <0 Limiting

: dt : population
2 | 2 2
Y Y e )
|odr |t | dr*
P
M M
2 Time !
Phase line Sketch
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Finding approximate solutions

Note, graphical method does not give the values of solutions.

We present a simple method, called the Euler's method, to find
approximate values of solutions.

Specifically, we consider the differential equation

% =g(x,y).

Assume that a starting value is given: y(xo) = Yo.

We will approximate values of y(x) for future values of x (x > xo).
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The tangent line at the point (o, Yo) can be written as

d
T0) = Yo + 2 ()X = Xo).
Using the differential equation

T(x) = Yo + 9(Xo, Yo)(x — Xo0)-

\ v =T() = yo+ 8(xp, Yo)(x — Xo)
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Let X; = Xo + Ax be a point near Xxo.

Then we can use the value y; = T(x;) of the tangent line to
approximate the value of the exact solution y(x;).

We have

Y1 = Yo + g(Xo, Yo ) AX.
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Similarly, the tangent line of y(x) at (x4, y(x1)) is

T(x) = y(x1) + g%,y (x1))(x — x4).
Let x, = x; + Ax be a point near x;.

Then we can use the value T(x;) to approximate the value of the
exact solution y(xz) by replacing y(xy) with y;.

Y2 = Y1+ g(x1,y1)Ax.
In general, we can use the formula

Yn+1 =Yn + Q(men)AX-
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Euler's method

Kuang HUANG

~

Ynt1 = Yn + g(Xn, Yn) AX.

(x3,y3)
(X, ¥2)

Euler approximation

G, )

l
True solution curve

yﬁwn

(Xo, Yo)

Ax

1
|
|
1
|
Ax | Ax
X2

|
I |
| |
1 1
Xo X
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Example: consider a saving account with variable interest rate.
We assume the interest rate r depends on the amount of saving S,
S(t+ At) = S(t) + r(S)S(t)At.
We obtain the model
— =r(5)S.
=)
We take:

- the initial deposit is $10, that is, S(0) = 10;
- the variable interest rate
/() = 1+2S
100 + 100S
(it is increasing from 1% to 2%);
o ANt =T,
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Recall
ds 1425

e r(S)s = sm, 5(0) =10.
- Let Sp = 10. then
S = So & At(soﬁ) — 10.1909.
- Next, we have
S) =S+ At(&ﬁ) = 10.3856.

So, the deposit in the second day is S(2) ~ $10.3856.
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Application: Parameter identification

The aim is to determine unknown parameters a and b in the model

dy
a - Gf(X,y) + bg(va)v
y(0) = a.

Motivation: parameters are needed in order to solve the model.

- In population model, we need to determine r > 0

dap
< = P(M—P).

- In drug concentration model, we need to determine k > 0

ac

— = —RC.
dt
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Determine unknown parameters a and b in the model

dy
= af (x,y) + bg(x,y),
y(0) = a.

Idea: perform experiments and collect data.

- Given the initial condition y(0) = «, we measure y(T) = S, that
is, the response at time T.

- Repeat the experiment with different initial conditions.
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Determine unknown parameters a and b in the model

dy
a - af(X7y) + bg(X,y)7
y(0) = a.

The solution is denoted by y(x; a, b).

Given a set of initial values a1, az, - - - , ay, we measure the
corresponding responses 3y, 35, -+, By at time T.

We find the parameters a and b so that S(a, b) is minimized:

N

S(@,0) =Y (8 - vi(T:a,0))

i=1

2
)

where y;(T; a, b) is the response at time T with parameters a and b,
and initial condition «;.
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We will minimize

S(a,b) = i (ﬂi —yi(T:a, b)>2-

i=1

We can use the gradient method. Given initial guess ag and bg, we
generate a sequence (ag, by) by the following

Qpy1 = A — Ak%(akv bk),
bryr = br — )\fe%(aka be),
where
N
7:_22( —yi(T:a b)) CZ( .a, b),
N

aS _ i .
%~ 2% (8 —y(T:a,0)) 5(T: 0. b).
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Next, we discuss how to compute

Ai(x;a,b) = 8a(xab) and Bj(x;a,b) = g x;a,b).

b(

Recall that y;(x; a, b) satisfies

d :
S~ af(x,) + bg(x.),
yi(0) = ai.

Taking derivative with respect to a, we have

dA.
L= £06,) + afy (%, A+ bay (6, 1 )A

Ai(0) = 0.

Kuang HUANG MATH3290-2023/24



From the above calculations, we see that to compute
ayi
Ai(T;a,b) = —(T;a,b).
(Tia,b) = = (T;a,b)

We need the following steps:

Step EB: solve the following

dA;
K F(x,vi) + afy(x, vi)Ai + bgy (x, vi)A;,
Ai(0) =0,

to get Ai(x; a, b).
Step B3: evaluate A; at x =T.
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Similarly, to compute

Bi(T;a,b) = ‘Zﬁ'(T a,b),

we need the following steps:

Step EB: solve the following

dB;
dX/ - ny(X,yj)B,‘ + g(x?yi) + bgy(xayf)Biv
Bi(0) =0,

to get Bij(x; a, b).
Step B3: evaluate B; at x =T.
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Summary of steps

Aim: determine unknown parameters a and b in the model

dy
a = Of(X,Y) + bg(X,y),
y(0) = a.

Assume that an initial guess ag and by have been chosen.
Let a, and by, be known.

Step BB: find y;(x; ak, bg), i =1,2,--- , N, by solving

d .
L= af (x, ) + brg(x, 1),
yi(0) = ai.

Then evaluate yi(T; ay, bg).




Step B3: find Ai(x; ag, bg), i =1,2,--- ,N, by solving

dA;
dXI = f(va/) + a/?fy(x7y/)Af + bkgy(x7y/)Ai7
Ai(0) =0,

where y; need to be determined from Step EB. Then evaluate
Ai(T; ag, bg).

Step E): find Bi(x; ax, by), i = 1,2,--- , N, by solving

dB;
di)(, - akfy(Xa y/)B/ + g(Xayf) + bf?gy(Xa y/)Biv
Bi(0) = 0,

where y; need to be determined from Step EB. Then evaluate
Bi(T; ax, be).
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Step @: update

oS
Qpr = Ak — /\k%(akv br),
0S
bryr = b — )\fe%(aka br),
where
S &
%(Gk, br) = -2 21: (51 — Vi(T; ay, bk))Ai(T; Qr, b)),
=
N

oS
%(Gm br) = -2 Z (5:‘ —Yi(T; ag, bk)) Bi(T; a, by).

=1

Step B: stop when

are small.
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A simple example

Consider finding the model parameter a for

W _

x Y

We follow the above procedure and set T = 1.

Step EB: Assume ai is already known, find yi(x; ag), i = 1,2,--- , N, by

solving
dy;
i aryi,
yi(0) = a.

Hence, we have yi(x; ax) = aje®*. So, yi(T; ag) = aje.
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Step B): find A(x; ag), i =1,2,--- ,N, by solving

dA; ‘
L i+ O = e + A
Ai(0) =0,

and then evaluate A;(T; ax). In general, for equations in the form

dA;
E) = R(x) + Q(x)A;.
We multiply the equation by e~ Jo @@ 42 (integrating factor method),

then i
= (A,-(s f3 a@) dz) = R(x)e~ Jo Q@) dz,

Integrate from x = 0 to x = T and recall that A;(0; o) = 0,

;
A(T: ap)e I3 0@0z / R(x)e~ i 042 gy
0
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Letting Q(x) = ay, and R(x) = «;e%*, we have (recall T = 1)
1
Ai(T; ag)e™% :/ e e M dx.
0

Thus,
A,‘(T; Clk) = a,-ea’*.

Step @3: update
Api1 = g — Ae=—(ap)
R+1 R k’a R)>

where

N

%(ak) = —2;: (/3:' —yi(T; ak)>Ai(T; ak)

N

=2 Z (ﬁi - aiea”)aieah.
i=1
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Consider some data

a] 1] 2 | 3
Gi | 3.5 1 6.9 | 10.5
Let ap = 1.1 and A\, = 0.005.
lteration | a 2(a) | S(a)
0 1.100 | —40.506 | 3.254
1 1.303 19.867 0.528
2 1.203 | —14.452 | 0.343
3 1.275 9.487 0.133
4 1.228 | —6.810 | 0.078
48 1.249 | —0.000 | 0.007
49 1.249 0.000 0.007

Hence, we have a = 1.249.
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Disclaimer

All figures, tables, and data appearing in the slides are only used for
teaching under guidelines of Fair Use.



