

MATH 3290 Mathematical Modeling

Chapter 11: Modeling with a Differential Equation

Kuang HUANG March 18, 2024

Department of Mathematics
The Chinese University of Hong Kong

Course webpage

https://www.math.cuhk.edu.hk/course/2324/math3290

Midterm report

- There are 31 answer sheets collected with 2 students absent.
- Nine achieved the full score 35, with the average score 30.58.
- · Solutions will be released later.
- · Keep up the great work!

Future arrangements

- The second assignment has been released. Due: 5pm, April 2nd.
- The final assignment will be released next week, possibly due by April 16th.

Introduction

- We discuss modeling with a differential equation.
- A differential equation is an equation relating a quantity of interest and its derivatives.
- Derivatives represent instantaneous rates of change of a quantity.
- Differential equations model quantities that change continuously in time, e.g., populations, concentration of chemicals.
- In contrast, difference equations model quantities that change in discrete time intervals.

Population growth

Suppose that the population at time $t = t_0$ is known, P_0 .

We want to predict the future population P(t), $t \ge t_0$.

Let *k* be the percentage growth per unit time and assume *k* is a constant.

Then, from time t to $t + \Delta t$,

$$\frac{P(t+\Delta t)-P(t)}{P(t)}=k\Delta t.$$

Thus,

$$\frac{P(t+\Delta t)-P(t)}{\Delta t}=kP(t).$$

If Δt is very small, we have

$$\frac{\mathrm{d}P}{\mathrm{d}t} = kP.$$

Moreover, we have $P(t_0) = P_0$.

The model is

$$\frac{\mathrm{d}P}{\mathrm{d}t}=kP,\qquad P(t_0)=P_0.$$

To find P, we separate the variables

$$\frac{\mathrm{d}P}{P} = k \, \mathrm{d}t.$$

Integrate both sides

$$\int \frac{1}{P} dP = \int k dt \quad \Rightarrow \quad \ln P = kt + C.$$

Use the condition $P(t_0) = P_0$ to determine C,

$$\ln P_0 = kt_0 + C \quad \Rightarrow \quad C = \ln P_0 - kt_0.$$

Finally, we have $\ln P = kt + C = kt + \ln P_0 - kt_0$,

$$P(t) = P_0 e^{k(t-t_0)}$$
, exponential growth.

The percentage growth rate per unit time *k* should **not** be a constant. One choice of *k* (due to a mathematician P. F. Verhulst) is

$$k(t) = r(M - P(t)), \qquad r > 0.$$

This suggests that the growth rate should be small when the population reaches the maximum population M.

Hence, the model becomes

$$\frac{P(t+\Delta t)-P(t)}{P(t)}=r(M-P)\Delta t.$$

Thus

$$\frac{P(t+\Delta t)-P(t)}{\Delta t}=rP(M-P).$$

When Δt is sufficiently small, we have

$$\frac{\mathrm{d}P}{\mathrm{d}t} = rP(M - P).$$

This is called the logistic model.

To find the solution, we separate the variables

$$\frac{\mathrm{d}P}{P(M-P)}=r\,\mathrm{d}t.$$

Using partial fractions, we have

$$\frac{1}{P(M-P)} = \frac{1}{M} \left(\frac{1}{P} + \frac{1}{M-P} \right).$$

The differential equations become

$$\frac{1}{P} dP + \frac{1}{M - P} dP = rM dt.$$

Recall that

$$\frac{1}{P} dP + \frac{1}{M - P} dP = rM dt.$$

Integrate both sides,

$$\int \frac{1}{P} dP + \int \frac{1}{M-P} dP = \int rM dt.$$

Assuming P > 0 and P < M, we have

$$\ln P - \ln(M - P) = rMt + C.$$

Using the initial condition $P(t_0) = P_0$ to determine C,

$$\ln P_0 - \ln(M - P_0) = rMt_0 + C.$$

Consequently,

$$\ln P - \ln(M - P) = rMt + (\ln P_0 - \ln(M - P_0) - rMt_0).$$

Recall that

$$\ln P - \ln(M - P) = rMt + (\ln P_0 - \ln(M - P_0) - rMt_0).$$

Solving for P, we have

$$P(t) = \frac{MP_0}{P_0 + (M - P_0)e^{-rM(t - t_0)}}.$$

This gives a formula for finding P at any time t.

Remarks:

- We see that $P(t) \to M$ as $t \to \infty$.
- Usually we assume M is given.
- To find the model parameter r > 0, we plot $\ln \frac{P}{M-P}$ against t, and the slope of the line is rM.

Consider the following data. We take M = 665.

Time (hr)	Observed yeast biomass	Biomass calculated from logistic equation (11.13)	Percen error
0	9.6	8.9	-7.3
1	18.3	15.3	-16.4
2	29.0	26.0	-10.3
3	47.2	43.8	-7.2
4	71.1	72.5	2.0
5	119.1	116.3	-2.4
6	174.6	178.7	2.3
7	257.3	258.7	0.5
8	350.7	348.9	-0.5
9	441.0	436.7	-1.0
10	513.3	510.9	-4.7
11	559.7	566.4	1.2
12	594.8	604.3	1.6
13	629.4	628.6	-0.1
14	640.8	643.5	0.4
15	651.1	652.4	0.2
16	655.9	657.7	0.3
17	659.6	660.8	0.2
18	661.8	662.5	0.1

We plot In $\frac{P}{665-P}$ against t, the slope is rM.

The value of rM can be obtained by the least squares method. We have $r = 8.27 \times 10^{-4}$.

How to determine P_0 ?

- Use the original data point, that is $P_0 = 9.6$ from the table.
- Recall that

$$\ln\left(\frac{P}{M-P}\right) = rMt + \ln\left(\frac{P_0}{M-P_0}\right) - rMt_0.$$

From the least squares method, we could obtain a linear model

$$\ln\left(\frac{P}{M-P}\right) \approx kt + C,$$

and we can hence solve P_0 by

$$C = \ln\left(\frac{P_0}{M - P_0}\right) - rMt_0.$$

Those two options should produce similar results.

Hence, the model is
$$P(t) = \frac{MP_0}{P_0 + (M - P_0)e^{-0.55(t - t_0)}}$$
.

Time (hr)	Observed yeast biomass	Biomass calculated from logistic equation (11.13)	Percent error
0	9.6	8.9	-7.3
1	18.3	15.3	-16.4
2	29.0	26.0	-10.3
3	47.2	43.8	-7.2
4	71.1	72.5	2.0
5	119.1	116.3	-2.4
6	174.6	178.7	2.3
7	257.3	258.7	0.5
8	350.7	348.9	-0.5
9	441.0	436.7	-1.0
10	513.3	510.9	-4.7
11	559.7	566.4	1.2
12	594.8	604.3	1.6
13	629.4	628.6	-0.1
14	640.8	643.5	0.4
15	651.1	652.4	0.2
16	655.9	657.7	0.3
17	659.6	660.8	0.2
18	661.8	662.5	0.1

The model fits the data very well.

Example: Drug dosage

We combine differential and difference equations in a model.

Q: How can the doses and the time between doses be adjusted to maintain a safe but effective concentration of drug?

Assumption 1: decay of drug.

Let C(t) be the concentration of the drug. Then we assume

$$\frac{\mathrm{d}C}{\mathrm{d}t} = -kC,$$

where k > 0 is the decay rate. We will obtain a differential equation model.

Assumption 2: constant dosage.

A dose of C_0 is added at fixed time intervals of length T. We will obtain a difference equation model

An illustration of C as a function of time t:

Some notations:

- \cdot R_n is the residual after n doses, before the next dose,
- C_n is the residual after n + 1 doses.

From Assumption 1, we have

$$C(t) = C(t_0)e^{-k(t-t_0)}$$

We see that $R_1 = C_0 e^{-kT}$.

Then a dosage of C_0 is added, we have

$$C_1 = C_0 + R_1 = C_0 + C_0 e^{-kT}$$
.

Then at time 2T, the residual is

$$R_2 = C_1 e^{-kT} = C_0 (e^{-kT} + e^{-2kT}).$$

Then a dosage of C_0 is added

$$C_2 = C_0 + R_2 = C_0 (1 + e^{-kT} + e^{-2kT}).$$

Continuing the above process, at time *nT*,

$$R_n = C_0 e^{-kT} (1 + e^{-kT} + \dots + e^{-(n-1)kT}).$$

That is

$$R_n = C_0 e^{-kT} \frac{1 - e^{-nRT}}{1 - e^{-kT}}.$$

We see that, in the long run $(n \to \infty)$:

$$R = \lim_{n \to \infty} C_0 e^{-kT} \frac{1 - e^{-nkT}}{1 - e^{-kT}} = \frac{C_0}{e^{kT} - 1}.$$

Recall:

- C_0 is the constant dosage level;
- T is the time interval;
- *R* it the concentration of drug in the long run.

Assume the drug is ineffective if the concentration is below *L*, and harmful if above *H*.

We set R = L (in the long run, the concentration is L), and $C_0 = H - L$. Then

$$R = \frac{C_0}{e^{kT} - 1}$$

becomes

$$L = \frac{H - L}{e^{kT} - 1}.$$

Solving, we have

$$T = \frac{1}{k} \ln \frac{H}{L},$$

which gives guidance of how much $(C_0 = H - L)$ and when $(T = \frac{1}{k} \ln \frac{H}{L})$ one should take the drug.

Graphical methods

Most differential equations cannot be solved easily.

Graphical method gives a sketch of the solution.

The following information could be derived from the sketch:

- 1. equilibrium points (EPs) (points at which the derivative is zero),
- 2. signs of the first order derivative (increase/decrease),
- 3. signs of the second order derivative (convex/concave).

To obtain the above information, a phase line is helpful.

Drawing a phase line

Consider the equation

$$\frac{\mathrm{d}y}{\mathrm{d}x}=(y+1)(y-2).$$

Step 1: locate the equilibrium points (EPs),

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 0 \quad \rightarrow \quad (y+1)(y-2) = 0.$$

Hence, the equilibrium points (EPs) are y = -1 and y = 2.

We indicate this in the phase line:

Recall the equation

$$\frac{\mathrm{d}y}{\mathrm{d}x}=(y+1)(y-2).$$

Step 2: determine the sign of y'.

We also put arrows (left \rightarrow decrease, right \rightarrow increase) to indicate how the value of y change.

Recall the equation

$$\frac{\mathrm{d}y}{\mathrm{d}x}=(y+1)(y-2).$$

Step 3: determine the sign of y''

$$\frac{\mathrm{d}^2 y}{\mathrm{d} x^2} = (y+1)\frac{\mathrm{d} y}{\mathrm{d} x} + (y-2)\frac{\mathrm{d} y}{\mathrm{d} x} = (2y-1)(y+1)(y-2).$$

Indicate the sign information in the phase line.

Step 4: sketch the solution using information from phase line.

we observe

- for y < -1, the function is increasing, slope is decreasing;
- for -1 < y < 1/2, the function is decreasing, slope is increasing;
- for 1/2 < y < 2, the function is decreasing, slope is decreasing;
- for y > 2, the function is increasing, slope is increasing.

Then we get the following sketch:

A useful program for phase plots: dfield. You can download it from https://www.cs.unm.edu/~joel/dfield/ (You need Java Runtime Environment to run it).

Stable and unstable equilibrium

Let y^* be an equilibrium point (EP).

- It is a stable equilibrium point (EP) if the solution starts at a
 point close to y*, then the solution for all future time remains
 close to y* (e.g., pendulum).
- It is an asymptotic stable equilibrium point (EP) if the solution starts at a point close to y^* , then the solution converges to y^* .
- It is an unstable equilibrium point (EP) if the solution starts at a point close to y^* , then the solution moves away from y^* .

Example: for the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x}=(y+1)(y-2).$$

Recall that the phase line is

We see that

- y = -1 is an asymptotic stable equilibrium point (EP),
- y = 2 is an unstable equilibrium point (EP).

Another example: consider the logistic equation

$$\frac{\mathrm{d}P}{\mathrm{d}t} = rP(M-P), \qquad r, M > 0.$$

Equilibrium points are P = 0 and P = M.

Moreover, we have

$$\frac{\mathrm{d}^2 P}{\mathrm{d}t^2} = r(M - 2P) \frac{\mathrm{d}P}{\mathrm{d}t}.$$

We see that

- P' > 0 when 0 < P < M, and P' < 0 when P > M;
- P'' > 0 when M 2P and P' have the same sign, and P'' < 0 otherwise.

We have the following phase line.

From the phase line, we see that

- P = 0 is an unstable equilibrium point (EP),
- P = M is an asymptotic stable equilibrium point (EP).

Phase line

Sketch

Finding approximate solutions

Note, graphical method does not give the values of solutions.

We present a simple method, called the Euler's method, to find approximate values of solutions.

Specifically, we consider the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = g(\mathbf{x}, y).$$

Assume that a starting value is given: $y(x_0) = y_0$.

We will approximate values of y(x) for future values of x ($x \ge x_0$).

The tangent line at the point (x_0, y_0) can be written as

$$T(x) = y_0 + \frac{\mathrm{d}y}{\mathrm{d}x}(x_0)(x - x_0).$$

Using the differential equation

$$T(x) = y_0 + g(x_0, y_0)(x - x_0).$$

Let $x_1 = x_0 + \Delta x$ be a point near x_0 .

Then we can use the value $y_1 = T(x_1)$ of the tangent line to approximate the value of the exact solution $y(x_1)$.

We have

$$y_1 = y_0 + g(x_0, y_0) \Delta x.$$

Similarly, the tangent line of y(x) at $(x_1, y(x_1))$ is

$$T(x) = y(x_1) + g(x_1, y(x_1))(x - x_1).$$

Let $x_2 = x_1 + \Delta x$ be a point near x_1 .

Then we can use the value $T(x_2)$ to approximate the value of the exact solution $y(x_2)$ by replacing $y(x_1)$ with y_1 .

$$y_2 = \mathbf{y_1} + g(\mathbf{x_1}, \mathbf{y_1}) \Delta \mathbf{x}.$$

In general, we can use the formula

$$y_{n+1} = y_n + g(x_n, y_n) \Delta x.$$

Euler's method

$$y_{n+1} = y_n + g(x_n, y_n) \Delta x.$$

Example: consider a saving account with variable interest rate.

We assume the interest rate r depends on the amount of saving S,

$$S(t + \Delta t) = S(t) + r(S)S(t)\Delta t.$$

We obtain the model

$$\frac{\mathrm{d}S}{\mathrm{d}t} = r(S)S.$$

We take:

- the initial deposit is \$10, that is, S(0) = 10;
- the variable interest rate

$$r(S) = \frac{1+2S}{100+100S}$$

(it is increasing from 1% to 2%);

• $\Delta t = 1$.

Recall

$$\frac{\mathrm{dS}}{\mathrm{d}t} = r(S)S = S \frac{1+2S}{100+100S}, \quad S(0) = 10.$$

• Let $S_0 = 10$. then

$$S_1 = S_0 + \Delta t \left(S_0 \frac{1 + 2S_0}{100 + 100S_0} \right) = 10.1909.$$

· Next, we have

$$S_2 = S_1 + \Delta t (S_1 \frac{1 + 2S_1}{100 + 100S_1}) = 10.3856.$$

So, the deposit in the second day is $S(2) \approx 10.3856 .

Application: Parameter identification

The aim is to determine unknown parameters a and b in the model

$$\frac{\mathrm{d}y}{\mathrm{d}x} = af(x, y) + bg(x, y),$$

$$y(0) = \alpha.$$

Motivation: parameters are needed in order to solve the model.

• In population model, we need to determine r > 0

$$\frac{\mathrm{d}P}{\mathrm{d}t} = rP(M - P).$$

• In drug concentration model, we need to determine k > 0

$$\frac{\mathrm{d}C}{\mathrm{d}t} = -kC.$$

Determine unknown parameters a and b in the model

$$\frac{\mathrm{d}y}{\mathrm{d}x} = af(x, y) + bg(x, y),$$

$$y(0) = \alpha.$$

Idea: perform experiments and collect data.

- Given the initial condition $y(0) = \alpha$, we measure $y(T) = \beta$, that is, the response at time T.
- Repeat the experiment with different initial conditions.

Determine unknown parameters a and b in the model

$$\frac{\mathrm{d}y}{\mathrm{d}x} = af(x, y) + bg(x, y),$$

$$y(0) = \alpha.$$

The solution is denoted by y(x; a, b).

Given a set of initial values $\alpha_1, \alpha_2, \dots, \alpha_N$, we measure the corresponding responses $\beta_1, \beta_2, \dots, \beta_N$ at time T.

We find the parameters a and b so that S(a, b) is minimized:

$$S(a,b) = \sum_{i=1}^{N} \left(\beta_i - y_i(T;a,b)\right)^2,$$

where $y_i(T; a, b)$ is the response at time T with parameters a and b, and initial condition α_i .

We will minimize

$$S(a,b) = \sum_{i=1}^{N} \left(\beta_i - y_i(T;a,b)\right)^2.$$

We can use the gradient method. Given initial guess a_0 and b_0 , we generate a sequence (a_k, b_k) by the following

$$a_{k+1} = a_k - \lambda_k \frac{\partial S}{\partial a}(a_k, b_k),$$

$$b_{k+1} = b_k - \lambda_k \frac{\partial S}{\partial b}(a_k, b_k),$$

where

$$\frac{\partial S}{\partial a} = -2 \sum_{i=1}^{N} \left(\beta_i - y_i(T; a, b) \right) \frac{\partial y_i}{\partial a}(T; a, b),$$

$$\frac{\partial S}{\partial b} = -2 \sum_{i=1}^{N} \left(\beta_i - y_i(T; a, b) \right) \frac{\partial y_i}{\partial b}(T; a, b).$$

Next, we discuss how to compute

$$A_i(x;a,b) = \frac{\partial y_i}{\partial a}(x;a,b)$$
 and $B_i(x;a,b) = \frac{\partial y_i}{\partial b}(x;a,b)$.

Recall that $y_i(x; a, b)$ satisfies

$$\frac{\mathrm{d}y_i}{\mathrm{d}x} = af(x, y_i) + bg(x, y_i),$$

$$y_i(0) = \alpha_i.$$

Taking derivative with respect to a, we have

$$\frac{\mathrm{d}A_i}{\mathrm{d}x} = f(x, \mathbf{y}_i) + af_y(x, \mathbf{y}_i)A_i + bg_y(x, \mathbf{y}_i)A_i,$$

$$A_i(0) = 0.$$

From the above calculations, we see that to compute

$$A_i(T; a, b) = \frac{\partial y_i}{\partial a}(T; a, b).$$

We need the following steps:

Step 1: solve the following

$$\frac{\mathrm{d}A_i}{\mathrm{d}x} = f(x, y_i) + af_y(x, y_i)A_i + bg_y(x, y_i)A_i,$$

$$A_i(0) = 0,$$

to get $A_i(x; a, b)$.

Step 2: evaluate A_i at x = T.

Similarly, to compute

$$B_i(T; a, b) = \frac{\partial y_i}{\partial b}(T; a, b),$$

we need the following steps:

Step 1: solve the following

$$\frac{\mathrm{d}B_i}{\mathrm{d}x} = af_y(x, y_i)B_i + g(x, y_i) + bg_y(x, y_i)B_i,$$

$$B_i(0) = 0,$$

to get $B_i(x; a, b)$.

Step 2: evaluate B_i at x = T.

Summary of steps

Aim: determine unknown parameters a and b in the model

$$\frac{\mathrm{d}y}{\mathrm{d}x} = af(x, y) + bg(x, y),$$

$$y(0) = \alpha.$$

Assume that an initial guess a_0 and b_0 have been chosen.

Let a_k and b_k be known.

Step 1: find $y_i(x; a_k, b_k)$, $i = 1, 2, \dots, N$, by solving

$$\frac{\mathrm{d}y_i}{\mathrm{d}x} = a_k f(x, y_i) + b_k g(x, y_i),$$

$$y_i(0) = \alpha_i.$$

Then evaluate $y_i(T; a_k, b_k)$.

Step 2: find $A_i(x; a_k, b_k)$, $i = 1, 2, \dots, N$, by solving

$$\frac{\mathrm{d}A_i}{\mathrm{d}x} = f(x, \mathbf{y}_i) + a_k f_y(x, \mathbf{y}_i) A_i + b_k g_y(x, \mathbf{y}_i) A_i,$$

$$A_i(0) = 0,$$

where y_i need to be determined from Step 1. Then evaluate $A_i(T; a_k, b_k)$.

Step 3: find $B_i(x; a_k, b_k)$, $i = 1, 2, \dots, N$, by solving

$$\frac{\mathrm{d}B_i}{\mathrm{d}x} = a_k f_y(x, \mathbf{y}_i) B_i + g(x, \mathbf{y}_i) + b_k g_y(x, \mathbf{y}_i) B_i,$$

$$B_i(0) = 0,$$

where y_i need to be determined from Step 1. Then evaluate $B_i(T; a_k, b_k)$.

Step 4: update

$$a_{k+1} = a_k - \lambda_k \frac{\partial S}{\partial a}(a_k, b_k),$$

$$b_{k+1} = b_k - \lambda_k \frac{\partial S}{\partial b}(a_k, b_k),$$

where

$$\frac{\partial S}{\partial a}(a_k, b_k) = -2 \sum_{i=1}^{N} \left(\beta_i - y_i(T; a_k, b_k)\right) A_i(T; a_k, b_k),$$

$$\frac{\partial S}{\partial b}(a_k, b_k) = -2 \sum_{i=1}^{N} \left(\beta_i - y_i(T; a_k, b_k)\right) B_i(T; a_k, b_k).$$

Step 5: stop when

$$\frac{\partial S}{\partial a}(a_k, b_k)$$
 and $\frac{\partial S}{\partial b}(a_k, b_k)$

are small.

A simple example

Consider finding the model parameter a for

$$\frac{\mathrm{d}y}{\mathrm{d}x} = ay.$$

We follow the above procedure and set T = 1.

Step 1: Assume a_k is already known, find $y_i(x; a_k)$, $i = 1, 2, \dots, N$, by solving

$$\frac{\mathrm{d}y_i}{\mathrm{d}x} = a_k y_i,$$
$$y_i(0) = \alpha_i.$$

Hence, we have $y_i(x; a_k) = \alpha_i e^{a_k x}$. So, $y_i(T; a_k) = \alpha_i e^{a_k}$.

Step 2: find $A_i(x; a_k)$, $i = 1, 2, \dots, N$, by solving

$$\frac{\mathrm{d}A_i}{\mathrm{d}x} = y_i + a_k A_i = \alpha_i \mathrm{e}^{a_k x} + a_k A_i,$$

$$A_i(0) = 0,$$

and then evaluate $A_i(T; a_k)$. In general, for equations in the form

$$\frac{\mathrm{d}A_i}{\mathrm{d}x} = R(x) + Q(x)A_i.$$

We multiply the equation by $e^{-\int_0^x Q(z) dz}$ (integrating factor method), then

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\mathsf{A}_{\mathsf{j}} \mathrm{e}^{-\int_0^x Q(\mathsf{z}) \, \mathrm{d}\mathsf{z}} \right) = \mathsf{R}(\mathsf{x}) \mathrm{e}^{-\int_0^x Q(\mathsf{z}) \, \mathrm{d}\mathsf{z}}.$$

Integrate from x = 0 to x = T and recall that $A_i(0; \alpha_k) = 0$,

$$A_i(T; a_k) \mathrm{e}^{-\int_0^T Q(z) \, \mathrm{d}z} = \int_0^T R(x) \mathrm{e}^{-\int_0^x Q(z) \, \mathrm{d}z} \, \mathrm{d}x.$$

Letting $Q(x) = a_k$ and $R(x) = \alpha_i e^{a_k x}$, we have (recall T = 1)

$$A_i(T; a_k) e^{-a_k} = \int_0^1 \alpha_i e^{a_k x} e^{-a_k x} dx.$$

Thus,

$$A_i(T; a_k) = \alpha_i e^{a_k}.$$

Step 4: update

$$a_{k+1} = a_k - \lambda_k \frac{\partial S}{\partial a}(a_k),$$

where

$$\frac{\partial S}{\partial a}(a_k) = -2\sum_{i=1}^{N} \left(\beta_i - y_i(T; a_k)\right) A_i(T; a_k)$$
$$= -2\sum_{i=1}^{N} \left(\beta_i - \alpha_i e^{a_k}\right) \alpha_i e^{a_k}.$$

α_i	1	2	3
β_{i}	3.5	6.9	10.5

Let $a_0 = 1.1$ and $\lambda_k = 0.005$.

Iteration	а	$\frac{\partial S}{\partial a}(a)$	S(a)
0	1.100	-40.506	3.254
1	1.303	19.867	0.528
2	1.203	-14.452	0.343
3	1.275	9.487	0.133
4	1.228	-6.810	0.078
:	:	÷	÷
48	1.249	-0.000	0.007
49	1.249	0.000	0.007

Hence, we have a = 1.249.

Disclaimer

All figures, tables, and data appearing in the slides are only used for teaching under guidelines of Fair Use.