MATH 3290 Mathematical Modeling
 Chapter 11: Modeling with a Differential Equation

Kuang HUANG
March 18, 2024
Department of Mathematics
The Chinese University of Hong Kong

Course webpage

https://www.math.cuhk.edu.hk/course/2324/math3290

SCAN ME

Midterm report

- There are 31 answer sheets collected with 2 students absent.
- Nine achieved the full score 35, with the average score 30.58.
- Solutions will be released later.
- Keep up the great work!

Future arrangements

- The second assignment has been released. Due: 5pm, April 2nd.
- The final assignment will be released next week, possibly due by April 16th.

Introduction

- We discuss modeling with a differential equation.
- A differential equation is an equation relating a quantity of interest and its derivatives.
- Derivatives represent instantaneous rates of change of a quantity.
- Differential equations model quantities that change continuously in time, e.g., populations, concentration of chemicals.
- In contrast, difference equations model quantities that change in discrete time intervals.

Population growth

Suppose that the population at time $t=t_{0}$ is known, P_{0}.
We want to predict the future population $P(t), t \geq t_{0}$.
Let k be the percentage growth per unit time and assume k is a constant.

Then, from time t to $t+\Delta t$,

$$
\frac{P(t+\Delta t)-P(t)}{P(t)}=k \Delta t .
$$

Thus,

$$
\frac{P(t+\Delta t)-P(t)}{\Delta t}=k P(t) .
$$

If Δt is very small, we have

$$
\frac{\mathrm{d} P}{\mathrm{~d} t}=k P .
$$

Moreover, we have $P\left(t_{0}\right)=P_{0}$.

The model is

$$
\frac{\mathrm{d} P}{\mathrm{~d} t}=k P, \quad P\left(t_{0}\right)=P_{0}
$$

To find P, we separate the variables

$$
\frac{\mathrm{d} P}{P}=k \mathrm{~d} t
$$

Integrate both sides

$$
\int \frac{1}{P} \mathrm{~d} P=\int k \mathrm{~d} t \Rightarrow \ln P=k t+C
$$

Use the condition $P\left(t_{0}\right)=P_{0}$ to determine C,

$$
\ln P_{0}=k t_{0}+C \quad \Rightarrow \quad C=\ln P_{0}-k t_{0} .
$$

Finally, we have $\ln P=k t+C=k t+\ln P_{0}-k t_{0}$,

$$
P(t)=P_{0} \mathrm{e}^{k\left(t-t_{0}\right)}, \quad \text { exponential growth. }
$$

The percentage growth rate per unit time k should not be a constant.
One choice of k (due to a mathematician P. F. Verhulst) is

$$
k(t)=r(M-P(t)), \quad r>0 .
$$

This suggests that the growth rate should be small when the population reaches the maximum population M.

Hence, the model becomes

$$
\frac{P(t+\Delta t)-P(t)}{P(t)}=r(M-P) \Delta t .
$$

Thus

$$
\frac{P(t+\Delta t)-P(t)}{\Delta t}=r P(M-P)
$$

When Δt is sufficiently small, we have

$$
\frac{\mathrm{d} P}{\mathrm{~d} t}=r P(M-P)
$$

This is called the logistic model.
To find the solution, we separate the variables

$$
\frac{\mathrm{d} P}{P(M-P)}=r \mathrm{~d} t
$$

Using partial fractions, we have

$$
\frac{1}{P(M-P)}=\frac{1}{M}\left(\frac{1}{P}+\frac{1}{M-P}\right)
$$

The differential equations become

$$
\frac{1}{P} \mathrm{~d} P+\frac{1}{M-P} \mathrm{~d} P=r M \mathrm{~d} t
$$

Recall that

$$
\frac{1}{P} \mathrm{~d} P+\frac{1}{M-P} \mathrm{~d} P=r M \mathrm{~d} t .
$$

Integrate both sides,

$$
\int \frac{1}{P} \mathrm{~d} P+\int \frac{1}{M-P} \mathrm{~d} P=\int r M \mathrm{~d} t
$$

Assuming $P>0$ and $P<M$, we have

$$
\ln P-\ln (M-P)=r M t+C .
$$

Using the initial condition $P\left(t_{0}\right)=P_{0}$ to determine C,

$$
\ln P_{0}-\ln \left(M-P_{0}\right)=r M t_{0}+C .
$$

Consequently,

$$
\ln P-\ln (M-P)=r M t+\left(\ln P_{0}-\ln \left(M-P_{0}\right)-r M t_{0}\right)
$$

Recall that

$$
\ln P-\ln (M-P)=r M t+\left(\ln P_{0}-\ln \left(M-P_{0}\right)-r M t_{0}\right)
$$

Solving for P, we have

$$
P(t)=\frac{M P_{0}}{P_{0}+\left(M-P_{0}\right) \mathrm{e}^{-r M\left(t-t_{0}\right)}} .
$$

This gives a formula for finding P at any time t.

Remarks:

- We see that $P(t) \rightarrow M$ as $t \rightarrow \infty$.
- Usually we assume M is given.
- To find the model parameter $r>0$, we plot $\ln \frac{P}{M-P}$ against t, and the slope of the line is $r M$.

Consider the following data. We take $M=665$.

Time (hr)	Observed yeast biomass	Biomass calculated from logistic equation (11.13)	Percent error
0	9.6	8.9	-7.3
1	18.3	15.3	-16.4
2	29.0	26.0	-10.3
3	47.2	43.8	-7.2
4	71.1	72.5	2.0
5	119.1	116.3	-2.4
6	174.6	178.7	2.3
7	257.3	258.7	0.5
8	350.7	348.9	-0.5
9	441.0	436.7	-1.0
10	513.3	510.9	-4.7
11	559.7	566.4	1.2
12	594.8	604.3	1.6
13	629.4	628.6	-0.1
14	640.8	643.5	0.4
15	651.1	652.4	0.2
16	655.9	657.7	0.3
17	659.6	660.8	0.2
18	661.8	662.5	0.1

We plot $\ln \frac{P}{665-p}$ against t, the slope is $r M$.
The value of $r M$ can be obtained by the least squares method. We have $r=8.27 \times 10^{-4}$.

How to determine P_{0} ?

- Use the original data point, that is $P_{0}=9.6$ from the table.
- Recall that

$$
\ln \left(\frac{P}{M-P}\right)=r M t+\ln \left(\frac{P_{0}}{M-P_{0}}\right)-r M t_{0} .
$$

From the least squares method, we could obtain a linear model

$$
\ln \left(\frac{P}{M-P}\right) \approx k t+C
$$

and we can hence solve P_{0} by

$$
C=\ln \left(\frac{P_{0}}{M-P_{0}}\right)-r M t_{0}
$$

Those two options should produce similar results.

$$
\text { Hence, the model is } P(t)=\frac{M P_{0}}{P_{0}+\left(M-P_{0}\right) \mathrm{e}^{-0.55\left(t-t_{0}\right)}}
$$

Time (hr)	Observed yeast biomass	Biomass calculated from logistic equation (11.13)	Percent error
0	9.6	8.9	-7.3
1	18.3	15.3	-16.4
2	29.0	26.0	-10.3
3	47.2	43.8	-7.2
4	71.1	72.5	2.0
5	119.1	116.3	-2.4
6	174.6	178.7	2.3
7	257.3	258.7	0.5
8	350.7	348.9	-0.5
9	441.0	436.7	-1.0
10	513.3	510.9	-4.7
11	559.7	566.4	1.2
12	594.8	604.3	1.6
13	629.4	628.6	-0.1
14	640.8	643.5	0.4
15	651.1	652.4	0.2
16	655.9	657.7	0.3
17	659.6	660.8	0.2
18	661.8	662.5	0.1

The model fits the data very well.

Example: Drug dosage

We combine differential and difference equations in a model.
Q: How can the doses and the time between doses be adjusted to maintain a safe but effective concentration of drug?

Assumption 1: decay of drug.
Let $C(t)$ be the concentration of the drug. Then we assume

$$
\frac{\mathrm{dC}}{\mathrm{~d} t}=-k C
$$

where $k>0$ is the decay rate. We will obtain a differential equation model.

Assumption 2: constant dosage.
A dose of C_{0} is added at fixed time intervals of length T. We will obtain a difference equation model

An illustration of C as a function of time t :

Some notations:

- R_{n} is the residual after n doses, before the next dose,
- C_{n} is the residual after $n+1$ doses.

From Assumption 1, we have

$$
C(t)=C\left(t_{0}\right) \mathrm{e}^{-k\left(t-t_{0}\right)}
$$

We see that $R_{1}=C_{0} \mathrm{e}^{-k T}$.
Then a dosage of C_{0} is added, we have

$$
C_{1}=C_{0}+R_{1}=C_{0}+C_{0} \mathrm{e}^{-k T} .
$$

Then at time $2 T$, the residual is

$$
R_{2}=C_{1} \mathrm{e}^{-k T}=C_{0}\left(\mathrm{e}^{-k T}+\mathrm{e}^{-2 k T}\right)
$$

Then a dosage of C_{0} is added

$$
C_{2}=C_{0}+R_{2}=C_{0}\left(1+\mathrm{e}^{-k T}+\mathrm{e}^{-2 k T}\right) .
$$

Continuing the above process, at time $n T$,

$$
R_{n}=C_{0} \mathrm{e}^{-k T}\left(1+\mathrm{e}^{-k T}+\cdots+\mathrm{e}^{-(n-1) k T}\right)
$$

That is

$$
R_{n}=C_{0} \mathrm{e}^{-k T} \frac{1-\mathrm{e}^{-n k T}}{1-\mathrm{e}^{-k T}}
$$

We see that, in the long run $(n \rightarrow \infty)$:

$$
R=\lim _{n \rightarrow \infty} C_{0} \mathrm{e}^{-k T} \frac{1-\mathrm{e}^{-n k T}}{1-\mathrm{e}^{-k T}}=\frac{C_{0}}{\mathrm{e}^{k T}-1}
$$

Recall:

- C_{0} is the constant dosage level;
- T is the time interval;
- R it the concentration of drug in the long run.

Assume the drug is ineffective if the concentration is below L, and harmful if above H .

We set $R=L$ (in the long run, the concentration is L), and $C_{0}=H-L$. Then

$$
R=\frac{C_{0}}{\mathrm{e}^{k T}-1}
$$

becomes

$$
L=\frac{H-L}{e^{k T}-1}
$$

Solving, we have

$$
T=\frac{1}{k} \ln \frac{H}{L},
$$

which gives guidance of how much $\left(C_{0}=H-L\right)$ and when $\left(T=\frac{1}{R} \ln \frac{H}{L}\right)$ one should take the drug.

Graphical methods

Most differential equations cannot be solved easily.
Graphical method gives a sketch of the solution.
The following information could be derived from the sketch:

1. equilibrium points (EPs) (points at which the derivative is zero),
2. signs of the first order derivative (increase/decrease),
3. signs of the second order derivative (convex/concave).

To obtain the above information, a phase line is helpful.

Drawing a phase line

Consider the equation

$$
\frac{d y}{d x}=(y+1)(y-2)
$$

Step 1 : locate the equilibrium points (EPs),

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=0 \quad \rightarrow \quad(y+1)(y-2)=0
$$

Hence, the equilibrium points (EPS) are $y=-1$ and $y=2$.
We indicate this in the phase line:

Recall the equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=(y+1)(y-2)
$$

Step 2 : determine the sign of y^{\prime}.

We also put arrows (left \rightarrow decrease, right \rightarrow increase) to indicate how the value of y change.

Recall the equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=(y+1)(y-2)
$$

Step 3 : determine the sign of $y^{\prime \prime}$

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=(y+1) \frac{\mathrm{d} y}{\mathrm{~d} x}+(y-2) \frac{\mathrm{d} y}{\mathrm{~d} x}=(2 y-1)(y+1)(y-2)
$$

Indicate the sign information in the phase line.

Step 4 : sketch the solution using information from phase line. we observe

- for $y<-1$, the function is increasing, slope is decreasing;
- for $-1<y<1 / 2$, the function is decreasing, slope is increasing;
- for $1 / 2<y<2$, the function is decreasing, slope is decreasing;
- for $y>2$, the function is increasing, slope is increasing.

Then we get the following sketch:

A useful program for phase plots: dfield. You can download it from https://www.cs.unm.edu/~joel/dfield/ (You need Java Runtime Environment to run it).

Stable and unstable equilibrium

Let y^{*} be an equilibrium point (EP).

- It is a stable equilibrium point (EP) if the solution starts at a point close to y^{*}, then the solution for all future time remains close to y^{*} (e.g., pendulum).
- It is an asymptotic stable equilibrium point (EP) if the solution starts at a point close to y^{*}, then the solution converges to y^{*}.
- It is an unstable equilibrium point (EP) if the solution starts at a point close to y^{*}, then the solution moves away from y^{*}.

Example: for the differential equation

$$
\frac{d y}{d x}=(y+1)(y-2)
$$

Recall that the phase line is

We see that

- $y=-1$ is an asymptotic stable equilibrium point (EP),
- $y=2$ is an unstable equilibrium point (EP).

Another example: consider the logistic equation

$$
\frac{\mathrm{d} P}{\mathrm{~d} t}=r P(M-P), \quad r, M>0 .
$$

Equilibrium points are $P=0$ and $P=M$.
Moreover, we have

$$
\frac{\mathrm{d}^{2} P}{\mathrm{~d} t^{2}}=r(M-2 P) \frac{\mathrm{d} P}{\mathrm{~d} t} .
$$

We see that

- $P^{\prime}>0$ when $0<P<M$, and $P^{\prime}<0$ when $P>M$;
- $P^{\prime \prime}>0$ when $M-2 P$ and P^{\prime} have the same sign, and $P^{\prime \prime}<0$ otherwise.

We have the following phase line.

From the phase line, we see that

- $P=0$ is an unstable equilibrium point (EP),
- $P=M$ is an asymptotic stable equilibrium point (EP).

Phase line

Sketch

Finding approximate solutions

Note, graphical method does not give the values of solutions.
We present a simple method, called the Euler's method, to find approximate values of solutions.

Specifically, we consider the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=g(x, y) .
$$

Assume that a starting value is given: $y\left(x_{0}\right)=y_{0}$.
We will approximate values of $y(x)$ for future values of $x\left(x \geq x_{0}\right)$.

Main idea

The tangent line at the point $\left(x_{0}, y_{0}\right)$ can be written as

$$
T(x)=y_{0}+\frac{d y}{d x}\left(x_{0}\right)\left(x-x_{0}\right) .
$$

Using the differential equation

$$
T(x)=y_{0}+g\left(x_{0}, y_{0}\right)\left(x-x_{0}\right) .
$$

Let $x_{1}=x_{0}+\Delta x$ be a point near x_{0}.
Then we can use the value $y_{1}=T\left(x_{1}\right)$ of the tangent line to approximate the value of the exact solution $y\left(x_{1}\right)$.

We have

$$
y_{1}=y_{0}+g\left(x_{0}, y_{0}\right) \Delta x .
$$

Similarly, the tangent line of $y(x)$ at $\left(x_{1}, y\left(x_{1}\right)\right)$ is

$$
T(x)=y\left(x_{1}\right)+g\left(x_{1}, y\left(x_{1}\right)\right)\left(x-x_{1}\right) .
$$

Let $x_{2}=x_{1}+\Delta x$ be a point near x_{1}.
Then we can use the value $T\left(x_{2}\right)$ to approximate the value of the exact solution $y\left(x_{2}\right)$ by replacing $y\left(x_{1}\right)$ with y_{1}.

$$
y_{2}=y_{1}+g\left(x_{1}, y_{1}\right) \Delta x .
$$

In general, we can use the formula

$$
y_{n+1}=y_{n}+g\left(x_{n}, y_{n}\right) \Delta x .
$$

Euler's method

$$
y_{n+1}=y_{n}+g\left(x_{n}, y_{n}\right) \Delta x .
$$

Example: consider a saving account with variable interest rate.
We assume the interest rate r depends on the amount of saving S,

$$
S(t+\Delta t)=S(t)+r(S) S(t) \Delta t .
$$

We obtain the model

$$
\frac{\mathrm{d} S}{\mathrm{~d} t}=r(S) S
$$

We take:

- the initial deposit is $\$ 10$, that is, $S(0)=10$;
- the variable interest rate

$$
r(S)=\frac{1+2 S}{100+100 S}
$$

(it is increasing from 1% to 2%);

- $\Delta t=1$.

Recall

$$
\frac{\mathrm{d} S}{\mathrm{~d} t}=r(S) S=S \frac{1+2 S}{100+100 S}, \quad S(0)=10
$$

- Let $S_{0}=10$. then

$$
S_{1}=S_{0}+\Delta t\left(S_{0} \frac{1+2 S_{0}}{100+100 S_{0}}\right)=10.1909
$$

- Next, we have

$$
S_{2}=S_{1}+\Delta t\left(S_{1} \frac{1+2 S_{1}}{100+100 S_{1}}\right)=10.3856
$$

So, the deposit in the second day is $S(2) \approx \$ 10.3856$.

Application: Parameter identification

The aim is to determine unknown parameters a and b in the model

$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} x}=a f(x, y)+b g(x, y), \\
& y(0)=\alpha .
\end{aligned}
$$

Motivation: parameters are needed in order to solve the model.

- In population model, we need to determine $r>0$

$$
\frac{\mathrm{d} P}{\mathrm{~d} t}=r P(M-P) .
$$

- In drug concentration model, we need to determine $k>0$

$$
\frac{\mathrm{d} C}{\mathrm{~d} t}=-k C .
$$

Determine unknown parameters a and b in the model

$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} x}=a f(x, y)+b g(x, y), \\
& y(0)=\alpha .
\end{aligned}
$$

Idea: perform experiments and collect data.

- Given the initial condition $y(0)=\alpha$, we measure $y(T)=\beta$, that is, the response at time T.
- Repeat the experiment with different initial conditions.

Determine unknown parameters a and b in the model

$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} x}=a f(x, y)+b g(x, y), \\
& y(0)=\alpha .
\end{aligned}
$$

The solution is denoted by $y(x ; a, b)$.
Given a set of initial values $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{N}$, we measure the corresponding responses $\beta_{1}, \beta_{2}, \cdots, \beta_{N}$ at time T.

We find the parameters a and b so that $S(a, b)$ is minimized:

$$
S(a, b)=\sum_{i=1}^{N}\left(\beta_{i}-y_{i}(T ; a, b)\right)^{2},
$$

where $y_{i}(T ; a, b)$ is the response at time T with parameters a and b, and initial condition α_{j}.

We will minimize

$$
S(a, b)=\sum_{i=1}^{N}\left(\beta_{i}-y_{i}(T ; a, b)\right)^{2}
$$

We can use the gradient method. Given initial guess a_{0} and b_{0}, we generate a sequence $\left(a_{k}, b_{k}\right)$ by the following

$$
\begin{aligned}
& a_{k+1}=a_{k}-\lambda_{k} \frac{\partial S}{\partial a}\left(a_{k}, b_{k}\right), \\
& b_{k+1}=b_{k}-\lambda_{k} \frac{\partial S}{\partial b}\left(a_{k}, b_{k}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& \frac{\partial S}{\partial a}=-2 \sum_{i=1}^{N}\left(\beta_{i}-y_{i}(T ; a, b)\right) \frac{\partial y_{i}}{\partial a}(T ; a, b), \\
& \frac{\partial S}{\partial b}=-2 \sum_{i=1}^{N}\left(\beta_{i}-y_{i}(T ; a, b)\right) \frac{\partial y_{i}}{\partial b}(T ; a, b) .
\end{aligned}
$$

Next, we discuss how to compute

$$
A_{i}(x ; a, b)=\frac{\partial y_{i}}{\partial a}(x ; a, b) \quad \text { and } \quad B_{i}(x ; a, b)=\frac{\partial y_{i}}{\partial b}(x ; a, b) .
$$

Recall that $y_{i}(x ; a, b)$ satisfies

$$
\begin{aligned}
& \frac{d y_{i}}{d x}=a f\left(x, y_{i}\right)+b g\left(x, y_{i}\right), \\
& y_{i}(0)=\alpha_{i} .
\end{aligned}
$$

Taking derivative with respect to a, we have

$$
\begin{aligned}
& \frac{\mathrm{d} A_{i}}{\mathrm{~d} x}=f\left(x, y_{i}\right)+a f_{y}\left(x, y_{i}\right) A_{i}+b g_{y}\left(x, y_{i}\right) A_{i}, \\
& A_{i}(0)=0 .
\end{aligned}
$$

From the above calculations, we see that to compute

$$
A_{i}(T ; a, b)=\frac{\partial y_{i}}{\partial a}(T ; a, b) .
$$

We need the following steps:
Step 1 : solve the following

$$
\begin{aligned}
& \frac{\mathrm{d} A_{i}}{\mathrm{~d} x}=f\left(x, y_{i}\right)+a f_{y}\left(x, y_{i}\right) A_{i}+b g_{y}\left(x, y_{i}\right) A_{i} \\
& A_{i}(0)=0
\end{aligned}
$$

to get $A_{i}(x ; a, b)$.
Step 2: evaluate A_{i} at $x=T$.

Similarly, to compute

$$
B_{i}(T ; a, b)=\frac{\partial y_{i}}{\partial b}(T ; a, b)
$$

we need the following steps:
Step 1 : solve the following

$$
\begin{aligned}
& \frac{\mathrm{d} B_{i}}{\mathrm{~d} x}=a f_{y}\left(x, y_{i}\right) B_{i}+g\left(x, y_{i}\right)+b g_{y}\left(x, y_{i}\right) B_{i}, \\
& B_{i}(0)=0
\end{aligned}
$$

to get $B_{i}(x ; a, b)$.
Step 2: evaluate B_{i} at $x=T$.

Summary of steps

Aim: determine unknown parameters a and b in the model

$$
\begin{aligned}
& \frac{\mathrm{d} y}{\mathrm{~d} x}=a f(x, y)+b g(x, y) \\
& y(0)=\alpha .
\end{aligned}
$$

Assume that an initial guess a_{0} and b_{0} have been chosen.
Let a_{k} and b_{k} be known.
Step 1 : find $y_{i}\left(x ; a_{k}, b_{k}\right), i=1,2, \cdots, N$, by solving

$$
\begin{aligned}
& \frac{\mathrm{d} y_{i}}{\mathrm{~d} x}=a_{k} f\left(x, y_{i}\right)+b_{k} g\left(x, y_{i}\right), \\
& y_{i}(0)=\alpha_{i} .
\end{aligned}
$$

Then evaluate $y_{i}\left(T ; a_{k}, b_{k}\right)$.

Step 2: find $A_{i}\left(x ; a_{k}, b_{k}\right), i=1,2, \cdots, N$, by solving

$$
\begin{aligned}
& \frac{\mathrm{d} A_{i}}{\mathrm{~d} x}=f\left(x, y_{i}\right)+a_{k} f_{y}\left(x, y_{i}\right) A_{i}+b_{k} g_{y}\left(x, y_{i}\right) A_{i}, \\
& A_{i}(0)=0,
\end{aligned}
$$

where y_{i} need to be determined from Step 1 . Then evaluate $A_{i}\left(T ; a_{k}, b_{k}\right)$.

Step 3 : find $B_{i}\left(x ; a_{k}, b_{k}\right), i=1,2, \cdots, N$, by solving

$$
\begin{aligned}
& \frac{\mathrm{d} B_{i}}{\mathrm{dx}}=a_{k} f_{y}\left(x, y_{i}\right) B_{i}+g\left(x, y_{i}\right)+b_{k} g_{y}\left(x, y_{i}\right) B_{i}, \\
& B_{i}(0)=0,
\end{aligned}
$$

where y_{i} need to be determined from Step

1. Then evaluate $B_{i}\left(T ; a_{k}, b_{k}\right)$.

Step 4 : update

$$
\begin{aligned}
& a_{k+1}=a_{k}-\lambda_{k} \frac{\partial S}{\partial a}\left(a_{k}, b_{k}\right), \\
& b_{k+1}=b_{k}-\lambda_{k} \frac{\partial S}{\partial b}\left(a_{k}, b_{k}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& \frac{\partial S}{\partial a}\left(a_{k}, b_{k}\right)=-2 \sum_{i=1}^{N}\left(\beta_{i}-y_{i}\left(T ; a_{k}, b_{k}\right)\right) A_{i}\left(T ; a_{k}, b_{k}\right), \\
& \frac{\partial S}{\partial b}\left(a_{k}, b_{k}\right)=-2 \sum_{i=1}^{N}\left(\beta_{i}-y_{i}\left(T ; a_{k}, b_{k}\right)\right) B_{i}\left(T ; a_{k}, b_{k}\right) .
\end{aligned}
$$

Step 5 : stop when

$$
\frac{\partial S}{\partial a}\left(a_{k}, b_{k}\right) \quad \text { and } \quad \frac{\partial S}{\partial b}\left(a_{k}, b_{k}\right)
$$

are small.

A simple example

Consider finding the model parameter a for

$$
\frac{\mathrm{d} y}{\mathrm{dx}}=a y
$$

We follow the above procedure and set $T=1$.
Step 1 : Assume a_{k} is already known, find $y_{i}\left(x ; a_{k}\right), i=1,2, \cdots, N$, by solving

$$
\begin{aligned}
& \frac{\mathrm{d} y_{i}}{\mathrm{~d} x}=a_{k} y_{i}, \\
& y_{i}(0)=\alpha_{i} .
\end{aligned}
$$

Hence, we have $y_{i}\left(x ; a_{k}\right)=\alpha_{i} e^{a_{k} x}$. So, $y_{i}\left(T ; a_{k}\right)=\alpha_{i} e^{a_{k}}$.

Step 2: find $A_{i}\left(x ; a_{k}\right), i=1,2, \cdots, N$, by solving

$$
\begin{aligned}
& \frac{\mathrm{d} A_{i}}{\mathrm{~d} x}=y_{i}+a_{k} A_{i}=\alpha_{i} e^{a_{k} x}+a_{k} A_{i}, \\
& A_{i}(0)=0
\end{aligned}
$$

and then evaluate $A_{i}\left(T ; a_{k}\right)$. In general, for equations in the form

$$
\frac{\mathrm{d} A_{i}}{\mathrm{dx}}=R(x)+Q(x) A_{i} .
$$

We multiply the equation by $\mathrm{e}^{-\int_{0}^{x} Q(z) \mathrm{dz} \text { (integrating factor method), }}$ then

$$
\frac{\mathrm{d}}{\mathrm{dx}}\left(A_{i} \mathrm{e}^{-\int_{0}^{x} Q(z) \mathrm{dz}}\right)=R(x) \mathrm{e}^{-\int_{0}^{x} Q(z) \mathrm{dz} .}
$$

Integrate from $x=0$ to $x=T$ and recall that $A_{i}\left(0 ; \alpha_{k}\right)=0$,

$$
A_{i}\left(T ; a_{k}\right) \mathrm{e}^{-\int_{0}^{T} Q(z) \mathrm{d} z}=\int_{0}^{T} R(x) \mathrm{e}^{-\int_{0}^{x} Q(z) \mathrm{d} z} \mathrm{~d} x .
$$

Letting $Q(x)=a_{k}$ and $R(x)=\alpha_{i} \mathrm{e}^{a_{k} x}$, we have (recall $T=1$)

$$
A_{i}\left(T ; a_{k}\right) \mathrm{e}^{-a_{k}}=\int_{0}^{1} \alpha_{i} \mathrm{e}^{a_{k} x} \mathrm{e}^{-a_{k} x} \mathrm{~d} x
$$

Thus,

$$
A_{i}\left(T ; a_{k}\right)=\alpha_{i} \mathrm{e}^{a_{k}}
$$

Step 4 : update

$$
a_{k+1}=a_{k}-\lambda_{k} \frac{\partial S}{\partial a}\left(a_{k}\right),
$$

where

$$
\begin{aligned}
\frac{\partial S}{\partial a}\left(a_{k}\right) & =-2 \sum_{i=1}^{N}\left(\beta_{i}-y_{i}\left(T ; a_{k}\right)\right) A_{i}\left(T ; a_{k}\right) \\
& =-2 \sum_{i=1}^{N}\left(\beta_{i}-\alpha_{i} \mathrm{e}^{a_{k}}\right) \alpha_{i} \mathrm{e}^{a_{k}}
\end{aligned}
$$

Consider some data

α_{i}	1	2	3
β_{i}	3.5	6.9	10.5

Let $a_{0}=1.1$ and $\lambda_{k}=0.005$.

Iteration	a	$\frac{\partial S}{\partial a}(a)$	$S(a)$
0	1.100	-40.506	3.254
1	1.303	19.867	0.528
2	1.203	-14.452	0.343
3	1.275	9.487	0.133
4	1.228	-6.810	0.078
\vdots	\vdots	\vdots	\vdots
48	1.249	-0.000	0.007
49	1.249	0.000	0.007

Hence, we have $a=1.249$.

Disclaimer

All figures, tables, and data appearing in the slides are only used for teaching under guidelines of Fair Use.

