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Modeling change

A powerful paradigm for modeling change is:

future_value = present_value + change.

To predict the future_value, one needs to know the
present_value and the change.

Note, change is something that we need to determine.

Thus, we need to develop mathematical models that give predictions
to change.
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Modeling change

We need a mathematical model for change. Note that

change = future_value — present_value.

- If the behavior is taking place over discrete time periods, we will
use a model based on difference equation, which will be studied
in this chapter.

- If the behavior is taking place continuously with respect to time,
we will use a model based on differential equation, which will
be studied later in this course.
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Modeling with difference equations

Some notations:

Let ag, a4, ay, ... be a sequence. They represent the values of certain
variable at discrete times 0, 1, 2, ...

The changes are defined by

Aag
Aay = a;—ay,

ar — do,

In general, the change at time nis Aa, = a, | — a,.
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Example: a saving account
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Consider a saving account with an initial deposit of $1000. Assume
that the interest rate is 1% per month.

Let n be the number of months and a, be the amount at the end of
the n-th month.

The change at the n-th month is
Aa, = 0.01a,.
Thus, we obtain the following difference equation:
an+1 — ap = 0.01a,

or
an+‘| S 1.010n.



Since the initial deposit is $1000, we set ag = 1000.

We obtain the following discrete dynamical system model

apy1 = 1.01a, n=0,12,...,
a, = 1000.

Remarks:

- In this example, the change Aa, is a function of a,. In general,
the change Aa, can be a function of more terms in the
sequence, thatis, Aa, = f(an, Gp_1,...).

- The change Aa, can also be a function of some other external
quantities.
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Example: home mortgage
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Consider a home loan of $80,000. The monthly interest rate is 1%
and the monthly payment is $880.87.

You want to know how much you owe at the end of 72 months.

We construct a model for this problem. Let b, be the amount owe at
the end of the n-th month. Note

change_in_amount_owe =interest_incurred

—monthly_payment.
So,
Ab, = 0.01b, — 880.87.

That is
bpy1 — b, = 0.01b, — 880.87.



Thus we obtain the model

bps = 1.01b,—880.87 n=0,1,2,...,
by = 80,000.

One can find the numerical solution in the following way.

by = 1.01by — 880.87 = 1.01 * 80,000 — 880.87 = 79,919.13,
b, = 1.01b; — 880.87 = 1.01 % 79,919.13 — 880.87 = 79,837.45,

Continuing, we get b;, = 71532.11.
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The numerical solution of the model.

Months | Amount owed
b,

n

79919.13
79837.45
79754.96
79671.64
79587.48
79502.49
79416.64
79329.94
79242.37
79153.92
79064.59
78974.37

SCoxuoUbE WL —O

_

S

80000.00

Loan value

80000
70000
60000
50000
40000
30000
20000
10000

0
0

Home mortgage

21

42 63 84 105 126 147 168 189 210 231
Months

One can find the number of months needed to pay off the loan.
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Approximating change
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In most cases, the change will not be as precise a procedure as in
the examples of saving account and home mortgage.

Typically, we need to obtain some data, plot the change and observe
a pattern. And then approximate the change in mathematical terms.

That is, we usually first do something like

Plot(a_certain_variable,change,...).

Mathematically, a pattern can be represented by a function

change = Function(a_certain_variable).



Example: growth of yeast

Time Observed
in yeast
hours biomass
n 5 o
| Pn - Experiments contain measurements of
0 96 . . . .
1 183 yeast biomass at different time points.
2 29.0 5 o 5
3 432 - Predict future biomass or explain the way
4 71.1 biomass changes.
5 119.1
6 174.6
7 257.3

To find a model, we look at the change.

Kuang HUAN MATH3290-2023 /2



We plot the change against py.

Time | Observed Ap,
in yeast Change in Change in biomass vs. biomass
hours biomass biomass 2
n Pa Pus1=Pa £ 100
0 9.6 8.7 2 °
1 18.3 10.7 s 50 . .
2 29.0 18.2 20
3 472 239 2 « ®
4 71.1 48.0 RN 1 | ! ! . P
5 119.1 555 50 100 150 200 !
6 174.6 82.7 Biomass
7 257.3

From the graph, it is reasonable to assume that the change Ap,, is
proportional to p,. That is

Apn:}?pn f?>0.
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We obtain the model for yeast biomass (or population).
Pny1 = (1+R)pn

This model predicts that yeast population will increase forever.

Pn

Growth in a yeast culture
700
It shows that the actual 6001~
. . 500 .
population does not increase & | .
forever. We need to refine our 2 ol *
model. 7 w0p .
100 |- . °
0 o ® ° 1 L 1 1
0 5 10 15 20

Time in hours

Remark
Model refinement is an important step.
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Time
in Yeast Change/
hours | biomass hour
n Pn Pn+1=Pn
0 9.6 8.7
1 18.3 10.7
2 29.0 18.2
3 472 239
4 71.1 48.0
5 119.1 555
6 174.6 82.7
7 257.3 93.4
8 350.7 90.3
9 441.0 723
10 5133 46.4
11 559.7 35.1
12 594.8 34.6
13 629.4 11.4
14 640.8 10.3
15 651.1 4.8
16 655.9 37
17 659.6 22
18 661.8

Yeast biomass

700
600 -
500 -
400
300 -
200 -
100 -

Growth in a yeast culture

Time in hours

- The change increases with p, for small py;

- The change decreases with p, for large pp;

- The yeast population approaches a limiting value, say 665.

Kuang HUANG
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Therefore, it is reasonable to propose the model
App = R(665 — pn)pn

That is, Ap, is a linear function of (665 — pp)pn. Is it good?

Pue1 =P | Pn(665-py)
8.7 6291.84 Growth constrained by resources
10.7 11,834.61 100 -
18.2 18.444.00 o0k D
23.9 29.160.16 s .
48.0 42,226.29 Y
55.5 65.016.69 <701
82.7 85,623.84 60
934 104,901.21 T S0 o .
90.3 110,225.01 < 40
723 98,784.00 0L °
46.4 77.867.61 0 o
35.1 58,936.41 4
34.6 41,754.96 :JO > ) ) )
114 22,406.64 50,000 100,000 150,000
103 15.507.36
4.8 9050.29 Pn(665-py)
3.7 5968.69
22 3561.84

They indeed have a linear relation (approximately).
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How to find k? (see Chap. 3)
Suppose that k = 0.00082. Then our model is

Ap, = 0.00082(665 — pp)py

with py = 9.6.

This dynamical system is called nonlinear because the right-hand
side is a nonlinear function.

One can then use this model to predict the population.

p1 = Po + 0.00082(665 — pg)po
= 9.6+ 0.00082(665 — 9.6)9.6
= 14.76.

Other p, can be found recursively.
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Below is a comparison of observations and predictions.

Time
in hours | Observation | Prediction
0 9.6 9.6
1 18.3 14.8
2 29.0 22.6
3 472 345
4 71.1 524
5 119.1 787
6 174.6 116.6
7 2573 169.0
8 350.7 237.8
9 441.0 321.1
10 5133 411.6
11 559.7 497.1
12 594.8 565.6
13 629.4 611.7
14 640.8 638.4
15 651.1 652.3
16 655.9 659.1
17 659.6 662.3
18 661.8 663.8

Yeast biomasss

700 -

400

300

200

100

Growth in a yeast culture

8.

® Observations
O Predictions

Time in hours

Hence, our model gives a satisfactory explanation of the yeast

population.
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Example: decay of drug

Suppose your body has an initial dosage of 0.5 mg. The following is
the amount of the drug measured at different time points.

an is the amount of drug at the end of n-th day.

n 0 1 2 3 4 5 6 7 8

an 0.500 0.345 0.238 0.164 0.113 0.078 0.054 0.037 0.026
Aap —0.155 -0.107 —-0.074 -0.051 —0.035 -0.024 —-0.017 -0.011

To find a model, we first look at the plot of Aa, against aj.
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0.1 02
T T

0.3 0.4 0.5 0.6
T T T T

-0.02
-0.04
-0.06
-0.08
-0.10
-0.12
-0.14
-0.16
-0.18

T T T T T T T T

Ad,

The model is

with ap = 0.5.

- It is reasonable to say that
Aa, = Ra,.

- We get k = —0.31 (see Chap.
3).

Aa, = —-0.31a, or ap4 = 0.69a,

One can use the model to predict future drug amount.

Kuang HUANG
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Linear dynamical systems
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We study the following

Anyr =f(ap) =rap+b

A number a is called an equilibrium value (EV) of a dynamical system
if ap = a, then a, = a for all n > 1 (starts at g, solutions remain at a).

That is, a, = a for all n, is a constant solution.

Consequently, a,4+1 = f(a,) implies that

a=f(a).
Thus, one can find a by solving the above equation.

We start with some examples.



Example: drug prescription

Assume that the drug is required to remain at a certain level. So, you
need a certain daily dosage.

Assume that a daily dosage of 0.1 mg is used and it is known that
half of the drug remains at the end of each day.

We obtain the model

Qany1 = 0.5a, 4+ 0.1.

We consider three starting values ag

A: ap = 0.1,
B - a = 0.2,
C: ag = 0.3.
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03 - 0.2 is an equilibrium value

025 (EV)

021 - If the initial dosage is above

0151 or below 0.2, the drug level
01 will approach to 0.2.

00 - This is an evidence of stable
% 5 10 5 equilibrium values (EVs).

The fact that 0.2 is a stable equilibrium value (EV) implies that the
drug concentration will remain at 0.2 in the long run.
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Example: annuity

A fixed amount is deposited initially and you are allowed to withdraw
a fixed amount each month. An interesting issue is to determine how
much you should deposit.

Assume that the interest rate is 1% per month and the monthly
withdrawn is $1000.

We obtain the model

Qp+1 = 1.07a, — 1000

We consider three initial deposits ag

A ao = 90,000,
B: ao = 100,000,
C: ao = 110,000.
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arl

- The value 100,000 is an

140,000 |- equilibrium value (EV).
oooy " - If the initial deposit is above
100-”0\_: or below $100,000, the

80,000 -

amount will be moving away
from 100,000.

60,000

40,000 |

20,000 - - This is an evidence of
o = ™ unstable equilibrium values
(EVs).

The fact that 100,000 is an unstable equilibrium value (EV) implies
that your account will not be depleted if your initial deposit is more
than $100,000.
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Classifying equilibrium values (EVs)

We have
Qpy1 =ran + b.

If a is an equilibrium value (EV), then ap41 = a, = a. Then
a=ra+b.
Thus, if r # 1, then
e 0
~I=F
Note:

- from the drug example, we have r = 0.5 and b = 0.1, then
a=0.2;

- from the annuity example, we have r = 1.017 and b = —1000, then
a = 100,000.
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Moreover, from the previous two examples, we conjecture that

- if [r| <1, then ais a stable equilibrium value (EV);

- if [r| > 1, then a is an unstable equilibrium value (EV).

To see this, we note that the solution a, can be expressed as

b
an=r"c+—
n ti T

where c is determined by ag.

. b b
Hence, if || <1, an — T If |r| > 1, a, moves away from T
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To verify that

b
an—rc+—

is a solution, we first note that we should have

an41 = rn+1C + ﬁ

Then

ran+b:r(r c+1E>+b

br
=r"lc+ —+b
1—r

i b(1—r)

=r"c
Jr'I—I’ T—r

b
= rn+1c+ ﬁ = aﬂ+1'

This is mathematical induction.

Kuang HUANG MATH3290-2023/24 28



Nonlinear dynamical systems

We study the following
ans1 = f(an), fisanonlinear function.
A number a is called an equilibrium value (EV) of a dynamical system
a=f(a).
To discuss stability, we use the Taylor expansion
fly) =f(a)+(y — a)f'(a) + O((y — a)?).
Let y = a,. We obtain

an1 —a = (a, — a)f’(a) + O((a, — a)?).




Recall
any1 — a = (ap — a)f'(a) + O((an — a)?)

Assume that a, is close to a.
a1 —a = (an — a)(f'(a) + R),

where R is a small variable with R = O(]a, — a|). Via the triangle
inequality, we will have

|an —al(If'(a)] = IR[) < |an4r — al < |an —al(|f'(a)[ + [R]).

Two cases:
- If |f’(a)] <1, then |[f’(a)| + |R| < 1. We have a, — q, itis a stable
equilibrium value (EV).
- If|f"(a)| > 1, then |f’(a)| — |R] > 1. The sequence {a,} diverges, it
is an unstable equilibrium value (EV).
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System of difference equations
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We consider modeling by a system of difference equations.
We are interested in the long-term behavior of the solutions.

If we start close to an equilibrium value, we want to know whether
the solution will

- remain close,

- approach to the equilibrium value (EV),

- or not remain close.

Moreover, we want to know whether this long-term behavior is
sensitive to initial conditions.



Example: a rental car company

The company has two offices, Orlando and Tampa.
The rental cars can be returned in either city.

You want to know if there are sufficient cars in each city to meet the
demand. If not, how many cars must be transferred from one city to

another.
40%
30%
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We will construct a model for this problem.

- Oy is the number of cars in Orlando at the end of day n,
- T, is the number of cars in Tampa at the end of day n.

Then the historical record suggests the model

Opy1 = 0.60,+0.3Ty;
Toe1 = 0.40,+0.7T,.
40%

o (oD

30%

Kuang HUANG MATH3290-2023/24



We will find the equilibrium values (EVs) of

Oni1 = 0.60,+ 03Ty,
Tn+’| = 0.4 On + 0.7 Tn.

Let (O, T) be an equilibrium value (EV). Then

0=0n=0n11, T=Ty=Top.

Hence, (O, T) satisfies

O = 060+03T,
T = 040+0.7T.

The system has infinitely many solutions, namely, any (O, T) with
40 = 3T is a solution.
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Now, assume that the company has 7000 cars. So, O + T = 7000.

Together with 40 = 3T, we get

0 = 3000,

which is the equilibrium value.

T = 4000,

Now, we try to see what happen for various initial conditions.

Orlando Tampa
Case 1 7000 0
Case 2 5000 2000
Case 3 2000 5000
Case 4 0 7000

Kuang HUANG
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0, = 7000,

Kuang HUANG

To = 0.

n Orlando Tampa

0 7000 0
1 4200 2800
2 3360 3640
3 3108 3892
4 3032.4 3967.6
5 3009.72 3990.28
6 | 3002.916 | 3997.084
7 | 3000.875 | 3999.125

Cars

7000
6000
5000
4000
3000
2000
1000

MATH3290-2023 /24
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0o = 5000, T, = 2000.
n Orlando Tampa
0 5000 2000
1 3600 3400
2 3180 3820
3 3054 3946
4 3016.2 3983.8
5 3004.86 3995.14
6 | 3001.458 | 3998.542
7 | 3000.437 | 3999.563

Kuang HUANG

Cars

7000
6000
50000
4000
3000
2000 &
1000 -

on

on

Lol |

o nm

oOnm

¢ Orlando
B Tampa

O n

b. Case 2
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Op = 2000, Ty =5000.

Kuang HUANG

Orland T < Orlando
n rlanao ampa
p 2000 L ® Tampa
vl o | ase  %%r
[ 3
2 2910 4090 miggg_ " 2 2 = = = =
3 2973 4027 %
4 2991.9 40081 © 3000 & O O & O O O
5| 2997.57 | 4002.43 20000
6 | 2999.271 | 4000.729 1000 F
7 | 2999.781 | 4000.219 0 I ! ! !
0 2 4 6 8
Days
c. Case 3
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0p =0,
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To = 7000.

n Orlando Tampa

0 0 7000
1 2100 4900
2 2730 4270
3 2919 4081
4 2975.7 4024.3
5 2992.71 4007.29
6 | 2997.813 | 4002.187
7 | 2999.344 | 4000.656

Cars

7000
6000
5000
4000
3000
2000
1000

MATH3290-2023/24
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From the above calculations, we see that

- the number of cars approach to the equilibrium value (EV) (this
is the long-term behavior);
- the equilibrium value (EV) is stable;

- the long-term behavior is insensitive to the starting values.

Knowing that 3000 cars will end up in Orlando and 4000 cars will end
up in Tampa, the company can then decide its strategy.
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Example: battle of Trafalgar

Kuang HUAN

In 1805, French-Spanish naval force fought British naval force.
The French-Spanish had 33 ships and the British had 27 ships.

At each encounter, each side suffers from a loss equal to 10% of the
number of ships of the opposing force.

- By is the number of British ships at stage n,
+ F, is the number of French-Spanish ships at stage n.

Then we have the model

By = Bn—0.1F,
Fre1 = Fn—0.1B,.
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Clearly, British force will lose.

Stage | Brittish force | French force 30

27.0000 33.0000

1
2 23.7000 30.3000 .
3 20.6700 27.9300 g 20 .
4 17.8770 25.8630 & ¢
5 15.2907 24.0753 Z .
6 12.8832 22.5462 |
7 10.6285 21.2579
8 8.5028 20.1951
9 6.4832 19.3448
10 4.5488 18.6965 0 |
11 2.6791 18.2416 0 5
Stage
L]
0L e
.
.
3 i
520
=
2
S
=10
0 Il
0 s

Stage
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Nelson's (British) Divide-and-Conquer strategy:

Divide British ships in 2
groups, and break the
French-Spanish ships in 3
e groups.

Then conquer one by one.

Scale in kilomatres
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More precisely, French-Spanish ships are divided as follows.

VYVYVVVVVVVVVYVVYVYY vvy VVVVVVVVVVYVYYY
——
Force B=17 Force A=3 Force C=13

- 13 ships from British force are engaged in Battle A,

- remaining ships (from Battle A) + 14 ships (14 = 27 — 13) are
engaged in Battle B;

- all remaining ships are engaged in Battle C.

For display purpose, we assume each side loses 5% of the number of
ships of the opposing force.

(Bni1 = By — 0.05F,, Fpyq = Fp — 0.05B,)
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British has 13 ships, French-Spanish has 3 ships.

Battle A 1oF
Stage | British force ‘ French force
L 1291
1 13.0000 | 3.00000 8
2 12.8500 | 2.35000 E °
3 127325 1.70750 S 128}
4 12,6471 1.07088 =
I .
127
. !
0 2 3
Stage
3F
.
g 2r
< .
=
2
5
[
ok . .
0 2 3
Stage

Kuang HUANG
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British has 12.6471+ 14 ships, French-Spanish has 1.07088 + 17 ships.

Battle B s
26 o
Stage | British force | French force 251 o
1 26.6471 18.0709 2l .
2 25.7436 16.7385 - .
3 24.9066 15.4513 231 .
4 24.1341 14.2060 »l .
5 23.4238 12.9993 - .
6 22.7738 11.8281 21 ®
7 22.1824 10.6894 2ol ..
8 21.6479 9.5803 - “eq.
9 21.1689 8.4979 19 - -
10 20.7440 7.4395 0 5 10 15
11 20.3720 6.4023 Stage
12 20.0519 5.3837
13 19.7827 4.3811 20
14 19.5637 3.3919 .
15 19.3941 24138 ° .
16 19.2734 1.4441 .
3 .
g .
£ .
= lofp .
oo .
.
.
.
.
.
0 | | 1
0 5 10 15
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British has 19.2734 ships, French-Spanish has 1.4441 + 13 ships.

Stage

Battle C

British force

French force

Kuang HUANG

19.2734
18.5512
17.8772
17.2495
16.6666
16.1268
15.6286
15.1707
14.7520
14.3711
14.0272
13.7191
13.4462
13.2075
13.0024
12.8304
12.6909
12.5834

14.4441
13.4804
12,5529
11.6590
10.7965
9.9632
9.1569
8.3754
7.6169
6.8793
6.1607
5.4594
4.7734
4.1011
3.4407
2.7906
2.1491
1.5146

Brittish force

French force

19.5
18.5
17.5
16.5
15.5
14.5
13.5

12.5
0

Stage



Example: competitive hunter model

Spotted owls and hawks compete for survival in a habitat.

Spotted owls
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Example: competitive hunter model

Spotted owls and hawks compete for survival in a habitat.

Assume that, in the absence of the other species, each individual
species exhibits unconstrained growth in which the change is
proportional to the population.

- 0, is the number of spotted owls at the end of day n,
- H, is the number of hawks at the end of day n.

Then we have the model
AOy :kﬁ Om AHn:kz Hm

where ky and R, are positive constants.
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The effect of the other species is to diminish the growth rate.

Note that there are many ways to model the mutual interaction of
the two species. We assume that the decrease in the population is
proportional to the product of the number of the two species.

Thus, we have the model

AO, = [?1On - kBOana
AHn = szn - I?quHm.
That is
On—H = (1 + I?1)On - kBOnHm
Hn—H = (’I +k2)Hn *I?AOnHm

where Rq,..., R, are positive.
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Now, we consider specific values of ky,..., k,. We have

Ony1 = 1.20, —0.0010,H,,

Hpew = 1.3H, — 0.0020,H,.
To find the equilibrium values (EVs) (O, H), we set O = Op = Op1 and
H = Hn - Hn+1,

O = 1.20—0.0010H,
H = 1.3H— 0.0020H.

Then

0 = 0.20—0.0010H = 0(0.2 — 0.001H),
0 = 0.3H-0.0020H = H(0.3 — 0.0020).
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0 = 0.20—0.0010H = 0(0.2 — 0.001H).
0 = 0.3H—0.0020H = H(0.3 — 0.0020).
From the first equation, we have
O=0 or H=200.
If O = 0, using the second equation, we have H = 0.

If H =200, using the second equation, we have O = 150.

Hence, the two equilibrium values (EVs) are (O, H) = (0, 0) and
(0, H) = (150, 200).
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Now we consider the long-term behavior, consider the 3 cases.

Owls Hawks
Case 1 151 199
Case 2 149 201
Case 3 10 10

For Case 1 and Case 2, the initial values are close to the equilibrium
value (EV) (150, 200).

For Case 3, the initial value is close to the equilibrium value (EV)
(0,0).
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n Owls Hawks
1 151 199
2 151.151 198.602
3 | 151.3623 | 198.1448
4 | 151.6431 | 197.6049
5 | 152.0063 | 196.9556
6 | 1524691 | 196.1653
7 | 153.0538 | 195.1966
8 | 153.7889 | 194.0044
9 154711 | 192.5343
10 155.866 | 190.7202
11| 157.3124 | 188.4827
12 | 159.1242 | 185.7261
13 | 161.3956 | 182.3369
14 | 164.2463 | 178.1812
15 167.83 | 173.1044
16 | 172.3438 | 166.9315
17 178.043 | 159.4717
18 | 185.2588 | 150.5276
19 194.424 | 139.9128
20 | 206.1064 | 127.4818
21 | 221.0528 | 113.1767
22 | 240.2454 | 97.09366
23 | 264.9681 | 79.56915
24 | 296.8785 | 61.27332
25 | 338.0634 | 43.27385
26 | 391.0468 | 26.99739
27 | 458.6989 | 13.98212
28 | 544.0252 | 5.349589
29 | 649.9199 | 1.133844
30 | 779.1669 | 0.000182
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a. Case 1

Moving away from equilibrium value, hawks will die out.
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n Owls Hawks
1 149 201
2 148.851 201.402
3 | 148.6423 | 201.8648
4 | 148.3651 202.413
5 | 148.0071 | 203.0748
6 147.552 | 203.8842
7 | 146.9789 | 204.8824
8 | 146.2613 | 206.1204
9 | 1453661 | 207.6616
10 | 144.2524 | 209.5862
11 | 142.8696 | 211.9954
12 | 141.1558 | 215.0186
13 | 139.0358 218.822
14 | 136.4189 | 223.6204
15 133.1966 | 229.6944
16 | 129.2414 | 237.4137
17 124.406 | 247.2705
18 | 118.5253 | 259.9277
19 | 111.4223 276.29
20 | 102.9219 | 297.6073
21 | 92.87598 | 325.6289
22 | 81.20808 | 362.8313
23 | 67.98486 412.751
24 | 53.52101 | 480.4547
25 | 38.51079 | 573.1623
26 | 24.14002 | 700.9651
27 | 12.04671 877.412
28 | 3.886124 | 1119.496
29 0.31285 | 1446.643
30 | —0.07716 | 1879.731
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b. Case 2

equilibrium value, owls will die out.
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n Owls Hawks
1 10 10
2 11.9 12.8
3 | 14.12768 | 16.33536
4 | 16.72244 | 20.77441
5 | 19.71952 | 26.31193
6 | 23.14457 | 33.16779
7 | 27.00583 | 41.58282
8 | 31.28402 | 51.81171
9 | 3591994 | 64.11347
10 | 40.80098 78.7416
11 | 4574844 | 95.93862
12 | 50.50908 | 115.9421
13 | 54.75477 | 139.0125
14 | 58.09413 165.493
15 | 60.09878 | 195.9126
16 | 60.34443 | 231.1382
17 | 58.46541 | 272.5838
18 | 54.22177 | 322.4855
19 | 47.58039 | 384.2597
20 | 38.81324 | 462.9712
21 | 28.60647 | 565.9237
22 | 18.13869 | 703.3227
23 | 9.009075 | 888.8048
24 | 2.803581 | 1139.432
25 | 0.169808 | 1474.872
26 | -0.04668 | 1916.833
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Moving away from equilibrium value, owls will die out.
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Conclusions

- If, initially, there are 151 owls and 199 hawks, then the hawks will
die out.

- If, initially, there are 149 owls and 201 hawks, then the owls will
die out.

- If, initially, there are 10 owls and 10 hawks, then the owls will die
out.

- The equilibrium values (EVs) are unstable. If the starting values
are close to an equilibrium value (EV), then the solutions will
move away from the equilibrium value (EV).

- Long-term behavior is sensitive to initial conditions.

- This model predicts that coexistence is impossible.
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Disclaimer

All figures, tables, and data appearing in the slides are only used for
teaching under guidelines of Fair Use.



