Math 3280 A

Review

- (Continuity of Probability)
$P\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\lim _{n \rightarrow \infty} P\left(E_{n}\right)$ if $\left(E_{n}\right)$ is increasing
$P\left(\bigcap_{n=1}^{\infty} E_{n}\right)=\lim _{n \rightarrow \infty} P\left(E_{n}\right)$ if $\left(E_{n}\right)$ is decreasing.
52.6 Sample space having equally likely outcomes.

In many experiments, it is natural to assume that all outcomes have the same chance to occur.

In this case,

$$
P(E)=\frac{\# \text { of outcomes in } E}{\# \text { of outcomes in } S}=\frac{\# E}{\# S} \text {. }
$$

Example 1. If two dices are rolled, What is the prob. that the sum of two outcomes is equal to 8 ?

Solution: Let E be the event that the
sum of two outcomes is equal to 6 . Then

$$
\begin{aligned}
E & =\{(i, j): \quad i, j \in\{1,2, \cdots, 6\}, \quad i+j=8\} \\
& =\{(2,6),(3,5),(4,4),(5,3),(6,2)\}
\end{aligned}
$$

and

$$
S=\{(i, j): \quad i, j \in\{1,2, \cdots, 6\}\}
$$

Hence $P(E)=\frac{\# E}{\# S}=\frac{5}{36}$

Ever 2
A committee of 5 is to be selected from a group of 6 men and 9 women. If the selection is made randomly, what is the probability that the committee consists of 3 men and 2 women?

Solution: Let E denote the event that the selected committee consists of 3 men and 2 women.

Let S be whole sample space.
Then

$$
\begin{aligned}
& \text { \#S }=\binom{15}{5} \\
& \# E=\binom{6}{3} \cdot\binom{9}{2}
\end{aligned}
$$

Hence $P(E)=\frac{\# E}{\# S}=\frac{\binom{6}{3}\binom{9}{2}}{\binom{15}{5}}$

$$
\binom{n}{m}=\frac{n!}{m!(n-m)!} \cdot\left(\begin{array}{l}
n!=n \times(n-1) \times \cdots 1
\end{array}\right)
$$

Exer 3.
In the game of bridge, the entire deck of 52 cards is dealt out to 4 players. What is the probability that
(a) one of the players receives all 13 spades;
(b) each player receives 1 ace?
(a)

Solution: Let E be the event that one of the players receives all 13 spades.
Let E_{i} be the event that i-th playerkeceives all 13 spades, $i=1,2,3,4$.
$E=\bigcup_{i=1}^{4} E_{i}, \quad E_{1}, \cdots, E_{4}$ are mutually exclusive.
So $P(E)=P\left(E_{1}\right)+P\left(E_{2}\right)+P\left(E_{3}\right)+P\left(E_{4}\right)$.

$$
\# E_{1}=\binom{39}{13} \cdot\binom{26}{13} \cdot\binom{13}{13}
$$

Similarly, $\# E_{2}=\# E_{3}=\# E_{4}=\# E_{1}$.

$$
\# S=\binom{52}{13}\binom{39}{13}\binom{26}{13}\binom{13}{13}
$$

Hence

$$
P\left(E_{1}\right)=\frac{\# E_{1}}{\# S}=\frac{\binom{39}{13}\binom{26}{13}}{\binom{52}{13}\binom{39}{13}\binom{26}{13}}=\frac{1}{\binom{52}{13}}
$$

So is $P\left(E_{i}\right), i=2,3,4$.

$$
P(E)=\sum_{i=1}^{4} P\left(E_{i}\right)=\frac{4}{\binom{5^{2}}{13}} .
$$

(b)

Let F be the event that each player receives an Ace.

$$
\# F=\frac{\binom{4}{1} \cdot\binom{48}{12} \cdot\binom{3}{1} \cdot\binom{36}{12} \cdot \text { (4 Aces }}{48 \text { othercardes cards }}
$$

Hence $P(F)=\frac{\binom{4}{1}\binom{48}{12}\binom{3}{1}\binom{36}{12}\binom{2}{1}\binom{24}{12}}{\binom{52}{13}\binom{39}{13}\binom{26}{13}}$.

Exer 4. A deck of 52 cards in dealt out. What is the probability that the first ace occurs in the 14 th card.

Solution: Let E denote the event that the first ace occurs in the 14 th card. Let S denote the sample space.

Then \#S = 52!

$$
\# E=48 \times 47 \times \cdots \times 36 \times 4 \times(38!)
$$

Hence

$$
P(E)=\frac{\# E}{\# S}=\frac{48 \times 47 \times \cdots \times 36 \times 4}{52 \times 51 \times \cdots \times 39} .
$$

Chap 3. Conditional probability and independence.
§3.1 Conditional probability.

Example; Let us roll two dices. suppose the first die is a 3. Given this information, What is the prob. That the sum of 2 dices equals 8
Sol: F - the event that the first die is 3
E - the event that the sum of 2 dies equals 8.

$$
\begin{aligned}
& F=\{(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)\} \\
& E=\left\{(i, j) \in\{1,2,3,4,5,6\}^{2}: \quad i+j=8\right\}
\end{aligned}
$$

Prob of each outcome in F is $\frac{1}{6}$
Hence the (conditional) prob of E given F is $\frac{1}{6}$.

Def. (conditional prob.)
Let E, F be two events for a random experiment. Suppose $P(F)>0$. Then the conditional prob. of E given F is

$$
P(E \mid F)=\frac{P(E F)}{P(F)}
$$

Example 2: A coin is flipped twice. What is the conditional prob. that both flips land on heads given that the flip lands on head?

Sol: Let F be the event that the first flip lands on head. That

$$
F=\{(H, H),(H, T)\}
$$

Let E be the event that both flips land on heads,

$$
E=\{(H, H)\} .
$$

By def, $\quad P(E \mid F)=\frac{P(E F)}{P(F)}=\frac{P\{(H, H)\}}{P\{(H, H),(H, T)\}}$
Notice that $S=\{(H, H),(H, T),(T, H),(T, T)\}$

Prop. (Multiplicative rule)

$$
\begin{aligned}
& P\left(E_{1} E_{2}\right)= \\
& \text { • } P\left(E_{1} E_{2} \cdots E_{n}\right) \\
&= P\left(E_{2} \mid E_{1}\right) \cdot P\left(E_{2} \mid E_{1}\right) \cdot P\left(E_{3} \mid E_{1} E_{2}\right) \cdots \\
& \cdot P\left(E_{n} \mid E_{1} E_{2} \cdots E_{n-1}\right)
\end{aligned}
$$

Pf. Since $P\left(E_{2} \mid E_{1}\right)=\frac{P\left(E_{1} E_{2}\right)}{P\left(E_{1}\right)}$, so

$$
P\left(E_{1} E_{2}\right)=P\left(E_{1}\right) \cdot P\left(E_{2} \mid E_{1}\right) .
$$

To see the second identity,

$$
\begin{aligned}
\text { RUS } & =P\left(E_{1}\right) \cdot \frac{P\left(E_{1} E_{2}\right)}{P\left(E_{1}\right)} \cdot \frac{P\left(E_{1} E_{2} E_{3}\right.}{P\left(E_{1} E_{2}\right)} \cdots \frac{P\left(E_{1} \cdots E_{n}\right)}{P\left(E_{1} \cdots E_{n-1}\right)} \\
& =P\left(E_{1} \cdots E_{n}\right)
\end{aligned}
$$

