Math 3280 A
23-09-14
Review
• (Continuity of Probability)

$$P(\bigcup_{n=1}^{\infty} E_n) = \lim_{n \to \infty} P(E_n)$$
 if (E_n) is increasing
 $P(\bigcap_{n=1}^{\infty} E_n) = \lim_{n \to \infty} P(E_n)$ if (E_n) is decreasing.
82.6 Sample space having equally likely outcomes.
In many experiments, it is natural to assume that
all outcomes have the same chance to occur.
In this case,
 $P(E) = \frac{\#}{\#} of outcomes$ in $E = \frac{\#}{\#} E$.

Example 1. If two dives are rolled,
What is the prob. that the sum of two outcomes
is equal to 8 ?
Solution: Let E be the event that the
Sum of two outcomes is equal to 6. Then

$$E = \{(\dot{v}, j) : \dot{v}, j \in \{1, 2, \dots, 6\}, \dot{v} + j = 8\}$$

 $= \{(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)\}$
and
 $S = \{(i, j) : -i, j \in \{1, 2, \dots, 6\}\}$
Hence $P(E) = \frac{\#E}{\#S} = \frac{5}{36}$

Exer 2.

A committee of 5 is to be selected from a group of 6 men and 9 women. If the selection is made randomly, what is the probability that the committee consists of 3 men and 2 women?

Solution: Let E denote the event that the selected committee consists of 3 men and 2 Women. Let S be whole sample space. Then $\# S = \begin{pmatrix} 15 \\ 5 \end{pmatrix},$ $\# \in = \begin{pmatrix} 6 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 9 \\ 2 \end{pmatrix} \cdot$ Hence $P(E) = \frac{\#E}{\#S} = \frac{\binom{6}{3}\binom{9}{2}}{\binom{2}{2}}$ $\begin{pmatrix} 15\\5 \end{pmatrix}$ $\binom{n}{m} = \frac{n!}{m! (n-m)!} \cdot \binom{n! = n \times (n-1) \times \cdots 1}{0! = 1}$

Exer 3.

In the game of bridge, the entire deck of 52 cards is dealt out to 4 players. What is the probability that (a) one of the players receives all 13 spades; (b) each player receives 1 ace?

Solution: Let E be the event that one of the players receives
all 13 spades.
the
Let E₁ be the event that i-th player receives
all 13 spades,
$$\hat{z}=1, 2, 3, 4$$
.
 $E = \bigcup_{i=1}^{4} E_i$, E_i, \dots, E_4 are mutually exclusive.
So $P(E) = P(E_1) + P(E_2) + P(E_5) + P(E_4)$.
 $\#E_1 = \binom{39}{13} \cdot \binom{26}{13} \cdot \binom{13}{13}$
Similarly, $\#E_2 = \#E_3 = \#E_4 = \#E_1$.
 $\#S = \binom{52}{13}\binom{39}{13}\binom{26}{13}\binom{13}{13}$
Hence
 $P(E_1) = \frac{\#E_1}{\#S} = \frac{\binom{39}{13}\binom{26}{13}\binom{26}{13}}{\binom{52}{13}\binom{26}{13}\binom{26}{13}\binom{26}{13}} = \frac{\binom{52}{53}}{\binom{52}{13}\binom{39}{13}\binom{26}{13}}$

So is
$$P(E_i)$$
, $i = 2, 3, 4$
 $P(E) = \sum_{i=1}^{4} P(E_i) = \frac{4}{\binom{52}{13}}$

(b)
Let F be the event that each player receives an Ace.
F =
$$\binom{4}{1} \cdot \binom{48}{12} \cdot \binom{3}{1} \cdot \binom{36}{12}$$
.
 $\cdot \binom{2}{1}\binom{24}{12}$
Hence $P(F) = \frac{\binom{4}{12}\binom{48}{12}\binom{3}{1}\binom{36}{12}\binom{1}{12}\binom{24}{12}}{\binom{52}{13}\binom{39}{13}\binom{26}{13}}$

Exerq. A deck of 52 cards in dealt out. What is the probability that the first are occurs in the 14th Card. Solution: Let E denote the event that the first ace occurs in the 14th card. Let S denote the Sample space. Then #S = 52! $\# E = 48 \times 47 \times \cdots \times 36 \times 4 \times (38!)$

Hence $P(E) = \frac{\#E}{\#S} = \frac{48 \times 47 \times \dots \times 36 \times 4}{52 \times 51 \times \dots \times 39}$

Chap3. Conditional probability and independence
\$11 Conditional probability.
Example 1; Let us roll two dices. Suppose the first
die is a 3. Given this information,
what is the prob. that the sum of 2 dices equals 8
Sol: F — the event that the first die is 3
E — the event that the sum of 2 dices
equals 8.
F =
$$\{(3,1), (3,2), (3,3), (3,4), (3,5), (3,6)\}$$

E = $\{(i,j) \in \{1,2,3,4,5,6\}^2$: $i+j=8$ }.
Prob of each outcome in F is $\overline{6}$.
Hence the (conditional) prob of E given F is $\overline{6}$.

Def. (conditional prob.).
Let E, F be two events for a random experiment.
Suppose
$$P(F) > 0$$
. Then the conditional prob. of E
given F is
 $P(E|F) = \frac{P(EF)}{P(F)}$.
Example 2: A coin is flipped twice. What is the
conditional prob. that both flips land on heads
given that the flip lands on head.
Tirst
Sol: Let F be the event that the first flip lands
on Read. That
 $F = \{(H, H), (H, T)\}$.
Let E be the event that both flips land on heads
 $E = \{(H, H)\}$.
By def, $P(E|F) = \frac{P(EF)}{P(F)} = \frac{P\{(H, H)\}}{P(F)}$

Prop. (Multiplicative rule)
•
$$P(E_1 E_2) = P(E_1) P(E_2|E_1)$$

• $P(E_1 E_2 \cdots E_n)$
 $= P(E_1) P(E_2|E_1) P(E_3|E_1E_2) \cdots$
• $P(E_n|E_1E_2) \cdots$
P(E_n|E_n|E_n|) P(E_n|E_n), so
 $P(E_1E_2) = P(E_1) P(E_2|E_1)$.
To see the second identity,
 $RHS = P(E_1) - \frac{P(E_1E_2)}{P(E_1)} - \frac{P(E_1E_2E_3)}{P(E_1E_2)} \cdots \frac{P(E_1\cdots E_n)}{P(E_1-1)}$
 $= P(E_1 \cdots E_n)$