Math 3280
Review.

- Axiomatic approach to probability.

A prob. P on the sample space S satisfies:
Axiom I: $\quad 0 \leqslant P(E) \leqslant 1, \quad \forall$ any Event E
Axiom II: $\quad P(S)=1$.
Axiom III: If E_{1}, E_{2}, \cdots, is a sequence of events Which are mutually exclusive,
then $P\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\sum_{n=1}^{\infty} P\left(E_{n}\right)$
(Countable additivity of prob.)

- Properties derived from the above axioms:
- $\mu(\phi)=0$
- (finite additivity) $\mu\left(\bigcup_{k=1}^{n} E_{k}\right)=\sum_{k=1}^{n} \mu\left(E_{k}\right)$ if E_{1}, \cdots, E_{n} are disjoint
- $\mu(E)=1-\mu\left(E^{C}\right)$
- $\mu(E) \leqslant \mu(F)$ if $E \in F$
- $\mu(E \cup F)=\mu(E)+\mu(F)-\mu(E \cap F)$.
- (Countable sub-additivity of Prob)

$$
P\left(\bigcup_{k=1}^{\infty} E_{k}\right) \leqslant \sum_{k=1}^{\infty} P\left(E_{k}\right)
$$

Prop. 1 (Continuity of Probability)
(1) $P\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\lim _{n \rightarrow \infty} P\left(E_{n}\right)$ if $E_{1} \subset E_{2} \subset \cdots$
(2) $P\left(\bigcap_{n=1}^{\infty} E_{n}\right)=\lim _{n \rightarrow \infty} P\left(E_{n}\right)$ if $E_{1} \supset E_{2} \supset \ldots$

Pf. We first prove (1).
wite $F_{1}=E_{1}$

$$
\begin{aligned}
& F_{2}=E_{2} \mid E_{1} \\
& \cdots \cdots \\
& F_{n}=E_{n} \backslash \bigcup_{i=1}^{n-1} E_{i}
\end{aligned}
$$

Then $F_{1}, \cdots, F_{n}, \cdots$ are mutually exclusive.
and $\bigcup_{i=1}^{n} F_{i}=\bigcup_{i=1}^{n} E_{i}=E_{n}$

$$
\bigcup_{i=1}^{\infty} F_{i}=\bigcup_{i=1}^{\infty} E_{i}
$$

Hence

$$
\begin{aligned}
& P\left(\bigcup_{n=1}^{\infty} E_{n}\right)=P\left(\bigcup_{n=1}^{\infty} F_{n}\right)=\sum_{n=1}^{\infty} P\left(F_{n}\right) \quad \text { (since }\left(F_{n}\right) \text { are } \\
& \text { mutually } \\
& =\lim _{h \rightarrow \infty} \sum_{k=1}^{n} P\left(F_{k}\right) \\
& =\lim _{n \rightarrow \infty} P\left(F_{1} \cup \cdots \cup F_{n}\right) \text { (since } F_{1}, \cdots, F_{n} \text { are } \\
& =\lim _{n \rightarrow \infty} P\left(E_{n}\right) \text {. }
\end{aligned}
$$

Next we prove (2).
Notice that

$$
E_{1}^{c} \subset E_{2}^{c} \subset \cdots
$$

By (1),

$$
P\left(\bigcup_{n=1}^{\infty} E_{n}^{c}\right)=\lim _{n \rightarrow \infty} P\left(E_{n}^{c}\right)
$$

But

$$
\begin{aligned}
& \text { LHS }=1-P\left(\bigcap_{n=1}^{\infty} E_{n}\right), \\
& \text { RHS }=\lim _{n \rightarrow \infty} 1-P\left(E_{n}\right) .
\end{aligned}
$$

This implies that $P\left(\bigcap_{n=1}^{\infty} E_{n}\right)=\lim _{n \rightarrow \infty} P\left(E_{n}\right)$.

Example 2. If $P(E)=0.8, \quad P(F)=0.9$
Show that $P(E \cap F) \geqslant 0.7$.

Pf. Recall

$$
P(E \cup F)=P(E)+P(F)-P(E \cap F)
$$

Hence

$$
\begin{aligned}
P(E \cap F) & =P(E)+P(F)-P(E \cup F) \\
& =0.8+0.9-P(E \cup F) \\
& \geqslant 0.8+0.9-1=0.7 .
\end{aligned}
$$

Example 3.
If $P(E)=0.8, \quad P(F)=0.9, \quad P(E \cap F)=0.75$ find the probability that exactly one of E and F occurs.

Solution: Let H denote the event that exactly one of E and F occurs.
Then

$$
H=(E \mid F) \underset{\substack{\text { (disjoint union) }}}{\underset{\sim}{u}}(F \mid E)
$$

Hence $P(H)=P(E \mid F)+P(F \mid E)$.
Notice that $E=(E \mid F) \cap(E \cap F)$

Hence $P(E)=P(E \mid F)+P(E \cap F)$
It follows that

$$
\begin{aligned}
P(E \mid F) & =P(E)-P(E \cap F) \\
& =0.8-0.75 \\
& =0.05 .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
P(F \mid E) & =P(F)-P(E \cap F) \\
& =0.9-0.75 \\
& =0.15
\end{aligned}
$$

Hence

$$
\begin{aligned}
P(H) & =P(E \mid F)+P(F \mid E) \\
& =0.05+0.15 \\
& =0.20 .
\end{aligned}
$$

