Math 3280 A do23/11/2 Review . Joint CDF of X and Y : $F(a,b) = P\{ X \le a, Y \le b\}, a, b \in \mathbb{R}.$ · All joint probability statements about X and Y are determined by the joint CDF of X and Y. Next we further study the joint distributions in the discrete case and continuous case, separately

(1) Discrete case.

· Now we consider the case that both X and Y are discrete. In such case, we can define the joint prob. mass function of X and Y by (joint pmf) $\varphi(x,y) = P\{X=x, Y=y\}.$

Then

$$P_{X}(x) = P\{X=x\}$$
$$= \sum_{y} P\{X=x, Y=y\}$$

$$= \sum_{y} p(x, y)$$

similarly

$$P_{Y}(y) = \sum_{X} P(X, y),$$

In particular

$$F(a,b) = \sum_{\substack{(X,y)\\X \leq a, \ Y \leq b.}} P(x,y)$$

(2) Continuous Care.
• Def: We say two r.u's X and Y are jointly continuous
if there exists
$$f: \mathbb{R}^2 \rightarrow [0, \infty)$$
 such that
 $P\{(X,Y) \in C\} = \iint_C f(x,y) dxdy$
for any "measurable" set $C \subset \mathbb{R}^2$.
(measurable" sets include, for instance,
the countable union/intersections
of rectangles $[a,b] \times [c,d]$)

Prop 1. Suppose X and Y have a joint density f.
Let F be the joint CDF of X and Y, and let
fx and fy be the marginal densities of X and Y.
Then
(1)
$$\frac{\partial F(a,b)}{\partial a \partial b} = f(a,b)$$
 for $a, b \in \mathbb{R}$.
(2) $f_X(a) = \int_{-\infty}^{\infty} f(a, y) dy$, $Q \in \mathbb{R}$
 $f_Y(b) = \int_{-\infty}^{\infty} f(x, b) dx$, $b \in \mathbb{R}^+$
 $F(a,b) = \int_{-\infty}^{a} \int_{-\infty}^{b} f(x, y) dy dx$
 $= \int_{-\infty}^{a} g(x) dx$ where $g_{G1} = \int_{-\infty}^{b} f(x, y) dy$
So $\frac{\partial F(a,b)}{\partial a \partial b} = g(a) = \int_{-\infty}^{b} f(a, y) dy$

(2)

$$F_{X}(a) = P\{ X \le a \}$$

$$= \int_{-\infty}^{\alpha} \left(\int_{-\infty}^{\infty} f(x,y) \, dy \right) \, dx$$
Let $f(x) = \int_{-\infty}^{\infty} f(x,y) \, dy$
Then

$$F_{X}(a) = \int_{-\infty}^{\alpha} f(x) \, dx$$
Taky derivatives gives

$$f_{X}(a) = \frac{d F_{X}(a)}{d a} = h(a) = \int_{-\infty}^{\infty} f(a,y) \, dy.$$
Similarly

$$f_{Y}(b) = \int_{-\infty}^{\infty} f(x,b) \, dx.$$

Example 2. Suppose X and Y have a joint density function

$$f(x,y) = \begin{cases} 12 \times y (1-x) & \text{if } 0 < x < 1, 0 < y < 1 \\ 0 & \text{otherwise} \end{cases}$$
Find f_X and $E[X]$.
Solution: By Prop 1,
 $f_X(a) = \int_{-\infty}^{\infty} f(a,y) \, dy$.
For $a \in (0,1)$,
 $f_X(a) = \int_{0}^{1} 12a(1-a)y \, dy$
 $= 6 a (1-a)$.
For $a \notin (0,1)$, $f_X(a) = 0$.

Hence
$$f_{\chi(a)} = \begin{cases} 6a (1-a) & \text{if } at(0,1) \\ 0 & \text{otherwise} \end{cases}$$

Now

$$E[X] = \int_{-\infty}^{\infty} x f_{\chi}^{0}(x) dx$$

$$= \int_{0}^{1} 6x^{2} (1-x) dx$$

$$= \int_{0}^{1} 6x^{2} - 6x^{3} dx$$

$$= 2x^{3} - \frac{3}{2}x^{4} \int_{0}^{1}$$

$$= \frac{1}{2}.$$

Example 3
Suppose X and Y have a joint denshity function

$$\begin{array}{l}
-(x+y) \\
f(x,y) = \begin{cases} e & \text{if } o < x < \varpi, o < y < \varpi \\
o & \text{otherwise.} \end{cases}$$
Find the prob. density function of $\frac{X}{Y}$.
Solution:
Since $f(x,y) = \circ$ if $(x,y) \notin (\circ, \infty) \times (\circ, \infty)$,
we may assume X, Y always take positive
Ualues. So is $\frac{X}{Y}$.
For $a > \circ$,
 $P\{ = \frac{X}{Y} \le a\} = P\{X \le aY\}$
 $= \iint_{\{(x,y): = x \le aY\}}$

§ 6.2 Independent random Variables

Recall that two events E and F are said to be independent if $p(E \cap F) = p(E)p(F)$.

We say that X and Y are independent if

$$P\{X \in A, Y \in B\} = P\{X \in A\} P\{Y \in B\},\$$

for all A, B = R. That is, the events $\{X \in A\}$ and
 $\{Y \in B\}$ are independent for all A, B = R.

Remark: X and Y are independent

$$\Rightarrow$$

 $F(a,b) = F_X(a) F_Y(b), \forall a, b \in \mathbb{R}.$

The direction \implies is clear. The other direction can be proved by using the three axioms of probability.

• Equivalent def of independence for r.v.'s.
Prop 5. Suppose X and Y are discrete. Then
X and Y are independent

$$\Leftrightarrow \quad p(x,y) = P_X(x) P_Y(y)$$
 (*)
Pf. Clearly X and Y are independent
 $\Leftrightarrow \quad P\{X \in A, Y \in B\} = P\{X \in A\} \cdot P\{Y \in B\}.$
Lettry $A = \{x\}, B = \{y\}$ gives
 $p(x, y) = P_X(x) P_Y(y).$
Now suppose (*) holds for all x, y,
Then for given A, B $\subset \mathbb{R}$.
 $P\{X \in A, Y \in B\} = \sum_{x \in A} \sum_{y \in B} P(x, y)$
 $= \sum_{x \in A} \sum_{y \in B} P(x, y) (\sum_{y \in B} P_Y(y))$
 $= P\{X \in A\}, P\{Y \in B\}.$

Prop 6. If X and Y are jointly continuous.
then X and Y are independent

$$\Leftrightarrow f(x, y) = f_X(x) f_Y(y).$$

Pf. X and Y are independent
 $\Leftrightarrow F(a,b) = F_X(a) F_Y(b), \forall a, b \in \mathbb{R}$
 $\Rightarrow \frac{\partial F(a,b)}{\partial a \partial b} = \frac{\partial F_X(a)}{\partial a} \cdot \frac{\partial F_Y(b)}{\partial b}$
i.e $f(a,b) = f_X(a) f_Y(b).$ (**).
Now if (**) holds, then
 $F(a,b) = \int_{-\infty}^{b} \int_{-\infty}^{a} f(x, y) dx dy$
 $= \int_{-\infty}^{b} \int_{-\infty}^{a} f_X(x) f_Y(y) dx dy$
 $= (\int_{-\infty}^{b} f_Y(y) dy) (\int_{-\infty}^{a} f_X(x) dx)$
 $= F_Y(b) \cdot F_X(a).$
Hence X, Y are independent.

Example 7: Suppose X and Y have a joint
density

$$f(x,y) = 24xy, \quad if o < x < 1, o < y < 1, o < x + y < 1$$
Determine whether X and Y are independent.
Solution: We first calculate the marginal
densities $f_X(x), \quad f_Y(y)$.
Notice that for $o < 0 < 1, \quad if \quad o < y < 1 - 0, \quad o \in 1, \quad if \quad o < y < 1 - 0, \quad o \in 1, \quad if \quad o < y < 1 - 0, \quad o \in 1, \quad if \quad o < y < 1 - 0, \quad o \in 1, \quad if \quad o < y < 1 - 0, \quad o \in 1, \quad o \in 1, \quad if \quad o < y < 1 - 0, \quad o \in 1, \quad o$

Similarly,

$$f_{Y(b)} = \int_{-\infty}^{\infty} f(x,b) dx$$

$$= \int_{0}^{1-b} 24 \times b dx$$

$$= (2 b (1-b)^{2} \quad \text{if } 0 < b < 1.$$
Clearly $f(a,b) \neq f_{X}(a) f_{Y}(b)$. Hence
 X, Y are not independent.