Math 3280 A

Review:

- Joint CDF of X and Y :

$$
F(a, b)=P\{X \leqslant a, Y \leqslant b\}, \quad a, b \in \mathbb{R} .
$$

- All joint probability statements about X and Y are determined by the joint CDF of X and Y.

Next we further study the joint distributions in the discrete case and continuous case, separately.
(1) Discrete case.

- Now we consider the case that both X and Y are discrete. In such case, we can define the joint prob. mass function of X and Y by (joint mf)

$$
P(x, y)=P\{X=x, Y=y\}
$$

Then

$$
\begin{aligned}
P_{x}(x) & =P\{X=x\} \\
& =\sum_{y} P\{X=x, Y=y\} \\
& =\sum_{y} P(x, y)
\end{aligned}
$$

similarly

$$
P_{Y}(y)=\sum_{x} p(x, y) .
$$

In particular

$$
F(a, b)=\sum_{\substack{(x, y) \\ x \leqslant a, y \leqslant b}} p(x, y)
$$

(2) Continuous case.

- Def: We say two rv's X and Y are jointly continuous if there exists $f: \mathbb{R}^{2} \rightarrow[0, \infty)$ such that

$$
P\{(X, Y) \in C\}=\iint_{C} f(x, y) d x d y
$$

for any "measurable" set $C \subset \mathbb{R}^{2}$.
(measurable" sets include, for instance, the countable urion/intersections of rectangles $[a, b] \times[c, d]$)

- In particular,

$$
\begin{aligned}
P\{X \leqslant a, Y \leqslant b\} & =P\{(X, Y) \in(-\infty, a) x(-\infty, b)\} \\
& =\int_{-\infty}^{b} \int_{-\infty}^{a} f(x, y) d x d y
\end{aligned}
$$

- The function f in the def is called the joint prob. density function of X and Y.

Prop 1. Suppose X and Y have a joint density f.
Let F be the joint CDF of X and Y, and let
f_{X} and f_{Y} be the marginal densities of X and Y.
Then
(1) $\frac{\partial^{2} F(a, b)}{\partial a \partial b}=f(a, b)$ for $a, b \in \mathbb{R}$.
(2) $f_{X}(a)=\int_{-\infty}^{\infty} f(a, y) d y, \quad a \in \mathbb{R}$

$$
f_{Y}(b)=\int_{-\infty}^{\infty} f(x, b) d x, \quad b \in \mathbb{R}
$$

Pf. (1) Recall that

$$
\begin{aligned}
F(a, b) & =\int_{-\infty}^{a} \int_{-\infty}^{b} f(x, y) d y d x \\
& =\int_{-\infty}^{a} g(x) d x \text { where } g(x)=\int_{-\infty}^{b} f(x, y) d y
\end{aligned}
$$

So $\frac{\partial F(a, b)}{\partial a}=g(a)=\int_{-\infty}^{b} f(a, y) d y$
and $\quad \frac{\partial^{2} F(a, b)}{\partial a \partial b}=\frac{\partial}{\partial b} \int_{-\infty}^{b} f(a, y) d y=f(a, b)$.
(2)

$$
\begin{aligned}
F_{X}(a) & =P\{x \leqslant a\} \\
& =\int_{-\infty}^{a}\left(\int_{-\infty}^{\infty} f(x, y) d y\right) d x
\end{aligned}
$$

Let $h(x)=\int_{-\infty}^{\infty} f(x, y) d y$
Then

$$
F_{x}(a)=\int_{-\infty}^{a} h(x) d x
$$

Taking derivatives gives

$$
f_{X}(a)=\frac{d F_{X}(a)}{d a}=h(a)=\int_{-\infty}^{\infty} f(a, y) d y .
$$

Similarly

$$
f_{Y}(b)=\int_{-\infty}^{\infty} f(x, b) d x
$$

Example 2. Suppose X and Y have a joint density function

$$
f(x, y)=\left\{\begin{array}{cl}
12 x y(1-x) & \text { if } 0<x<1,0<y<1 \\
0 & \text { otherwise. }
\end{array}\right.
$$

Find f_{X} and $E[X]$.

Solution: By Prop 1,

$$
f_{x}(a)=\int_{-\infty}^{\infty} f(a, y) d y
$$

For $\quad a \in(0,1)$,

$$
\begin{aligned}
f_{x}(a) & =\int_{0}^{1} 12 a(1-a) y d y \\
& =6 a(1-a)
\end{aligned}
$$

For $\quad a \notin(0,1), \quad f_{x}(a)=0$.

Hence $\quad f_{x(a)}=\left\{\begin{array}{cl}6 a(1-a) & \text { if } a \in(0,1) \\ 0 & \text { otherwise. }\end{array}\right.$

Now

$$
\begin{aligned}
E[X] & =\int_{-\infty}^{\infty} x f_{X}(x) d x \\
& =\int_{0}^{1} 6 x^{2}(1-x) d x \\
& =\int_{0}^{1} 6 x^{2}-6 x^{3} d x \\
& =2 x^{3}-\left.\frac{3}{2} x^{4}\right|_{0} ^{1} \\
& =\frac{1}{2} .
\end{aligned}
$$

Example 3.
Suppose X and Y have a joint denstity function

$$
f(x, y)=\left\{\begin{array}{cc}
e^{-(x+y)} & \text { if } 0<x<\infty, 0<y<\infty \\
0 & \text { otherwise. }
\end{array}\right.
$$

Find the prob. density function of $\frac{X}{Y}$.

Solution:
Since $f(x, y)=0$ if $(x, y) \notin(0, \infty) \times(0, \infty)$, we may assume X, Y always take positive values. So is X / Y.

For $a>0$,

$$
\begin{aligned}
P\left\{\frac{X}{Y} \leqslant a\right\} & =P\{X \leqslant a Y\} \\
& =\iint_{\{(x, y): x \leqslant a y\}} f(x, y) d x d y
\end{aligned}
$$

$$
\begin{aligned}
& =\iint^{-(x+y)} e^{-1} d x d y \\
& =\int_{0}^{\infty} \int_{0}^{-(x, y) \in(0, \infty) x(0, \infty): x \leq a y\}} d \\
& =\int_{0}^{\infty} d x d y \\
& =\int_{0}^{\infty} \cdot\left(-e^{-x}\right) e_{0}^{-y} \cdot\left(1-e^{-a y}\right) d y \\
& =\int_{0}^{\infty} e^{-y}-e^{-(a+1) y} d y \\
& =-e^{-y}+\left.\frac{1}{1+a} e^{-(a+1) y}\right|_{0} ^{\infty} \\
& =1-\frac{1}{1+a}
\end{aligned}
$$

Taky denivative gives

$$
f_{\frac{x}{y}}(a)=\left\{\begin{array}{cc}
\frac{1}{(1+a)^{2}} & a>0 \\
0 & \text { otherwise. }
\end{array}\right.
$$

\$6.2 Independent random Variables

Recall that two events E and F are said to be independent if $P(E \cap F)=P(E) P(F)$.

Def: Let X and Y be two r.v.'s.
We say that X and Y are independent if

$$
P\{x \in A, Y \in B\}=P\{x \in A\} P\{Y \in B\}
$$

for all $A, B \in \mathbb{R}$. That is, the events $\{X \in A\}$ and $\{Y \in B\}$ are independent for all $A, B \subset \mathbb{R}$.

Remark: X and Y are independent

$$
F(a, b)=F_{X}(a) F_{Y}(b), \quad \forall a, b \in \mathbb{R}
$$

The direction \Rightarrow " is clear. The other direction can be proved by using the three axioms of probability.

- Equivalent def of independence for r.u.'s.

Prop 5. Suppose X and Y are discrete. Then X and Y are independent

$$
\begin{equation*}
\Leftrightarrow \quad P(x, y)=P_{X}(x) P_{Y}(y) \tag{*}
\end{equation*}
$$

Pf. Clearly X and Y are independent

$$
\Leftrightarrow P\{X \in A, Y \in B\}=P\{X \in A\} \cdot P\{Y \in B\} .
$$

Lettry $A=\{x\}, B=\{y\}$ gives

$$
P(x, y)=P_{X}(x) P_{Y}(y)
$$

Now suppose (*) holds for all x, y,
Then for given $A, B \subset \mathbb{R}$,

$$
\begin{aligned}
P\{X \in A, Y \in B\} & =\sum_{x \in A} \sum_{y \in B} P(x, y) \\
& =\sum_{x \in A} \sum_{y \in B} P_{X}(x) P_{Y}(y) \\
& =\left(\sum_{x \in A} P_{X}(x)\right)\left(\sum_{y \in B} P_{Y}(y)\right) \\
& =P\{X \in A\} P\{Y \in B\} .
\end{aligned}
$$

Prop 6. If X and Y are jointly continuous. then X and Y are independent

$$
\Leftrightarrow f(x, y)=f_{X}(x) f_{Y}(y)
$$

Pf. X and Y are independent

$$
\begin{aligned}
& \Leftrightarrow F(a, b)=F_{X}(a) F_{Y}(b), \forall a, b \in \mathbb{R} \\
& \Rightarrow \frac{\partial^{2} F(a, b)}{\partial a \partial b}=\frac{d F_{X}(a)}{d a} \cdot \frac{d F_{Y}(b)}{d b} \\
& \text { i.e } f(a, b)=f_{X}(a) f_{Y}(b) . \quad(* *) .
\end{aligned}
$$

Now if $(* *)$ holds, then

$$
\begin{aligned}
F(a, b) & =\int_{-\infty}^{b} \int_{-\infty}^{a} f(x, y) d x d y \\
& =\int_{-\infty}^{b} \int_{-\infty}^{a} f_{X}(x) f_{Y}(y) d x d y \\
& =\left(\int_{-\infty}^{b} f_{Y}(y) d y\right)\left(\int_{-\infty}^{a} f_{X}(x) d x\right) \\
& =F_{Y}(b) \cdot F_{X}(a) .
\end{aligned}
$$

Hence X, Y are independent.

Example 7: Suppose X and Y have a joint density

$$
f(x, y)=24 x y, \quad \text { if } 0<x<1, \quad 0<y<1,0<x+y<1
$$

Determine whether X and Y are independent.
Solution: We first calculate the marginal densities $f_{X}(x), f_{Y}(y)$.
Notice that for $0<a<1$,

$$
f(a, y)=\left\{\begin{array}{cc}
24 a y, & \text { if } 0<y<1-a, \\
0 & \text { other wise. }
\end{array}\right.
$$

So $f_{x}(a)=\int_{-\infty}^{-\infty} f(a, y) d y$

$$
\begin{aligned}
& =\int_{0}^{1-a} 24 a y d y \\
& =\left.24 a \frac{y^{2}}{2}\right|_{0} ^{1-a}=12 a \cdot(1-a)^{2}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
f_{Y}(b) & =\int_{-\infty}^{\infty} f(x, b) d x \\
& =\int_{0}^{1-b} 24 x b d x \\
& =12 b(1-b)^{2} \quad \text { if } 0<b<1
\end{aligned}
$$

Clearly $f(a, b) \neq f_{X}(a) f_{Y}(b)$. Hence X, Y are not independent.

