Math $3280 \mathrm{~A} \quad 23 / 10 / 19$

Review.

- Uniform r.v. on $[a, b]$,

$$
f(x)= \begin{cases}\frac{1}{b-a} & \text { if } x \in[a, b] \\ 0 & \text { otherwise }\end{cases}
$$

- Let X be a cts r.u. with density f and let F_{x} denote the CDF of X.
Then

$$
F_{x}^{\prime}(b)=f(b) \text { if } f \text { is cts at } b
$$

§ 5.4 Normal ru.

Def. Let $\mu \in \mathbb{R}$ and $\sigma>0$. Say X is a normal $r: U$. with parameters μ and σ^{2} if its $p d f$ is given by

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma^{2}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}, \quad-\infty<x<\infty
$$

Below we give some facts about normal r.U.'s

Fact 1
The above f is indeed a pdf.
To see this,

$$
\frac{1}{\sqrt{2 \pi} \sigma} \int_{-\infty}^{\infty} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}} d x \stackrel{\text { Lett ic } y=\frac{x-\mu}{\sigma}}{=} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{\frac{-y^{2}}{2}} d y
$$

we need to show $\int_{-\infty}^{\infty} e^{\frac{-y^{2}}{2}} d y=\sqrt{2 \pi}$. Notice
(*) $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{\left(x^{2}+y^{2}\right)}{2}} d x d y$
$\underline{\underline{\text { Letting }\left\{\begin{array}{l}x=r \cos \theta \\ y=r \sin \theta\end{array}\right.} \int_{0}^{2 \pi} \int_{0}^{\infty} e^{-\frac{r^{2}}{2}} r d r d \theta}$

$$
\begin{aligned}
& =\int_{0}^{2 \pi}\left(\int_{0}^{\infty} e^{-\frac{r^{2}}{2}} r d r\right) d \theta \\
& =2 \pi \int_{0}^{\infty} e^{-\frac{r^{2}}{2}} r d r \\
& =\left.2 \pi\left(-e^{-\frac{r^{2}}{2}}\right)\right|_{0} ^{\infty} \\
& =2 \pi
\end{aligned}
$$

$$
\text { Since ** }=\left(\int_{-\infty}^{\infty} e^{-\frac{y^{2}}{2}} d y\right)^{2} \text {, we obtain the } \quad \text { desired identity. }
$$

Fact 2
Let X be normal ru with parameters μ and σ^{2}, then

$$
Z:=\frac{X-\mu}{\sigma}
$$

is a normal ru with parameters 0 and 1.
We call Z a standard normal r.U.

Pf. Calculate the cumulative distribution of Z,

$$
\begin{aligned}
F_{Z}(a) & =P\{Z \leqslant a\} \\
& =P\left\{\frac{X-\mu}{\sigma} \leqslant a\right\} \\
& =P\{X \leqslant a \sigma+\mu\} \\
& =\int_{-\infty}^{a \sigma+\mu} \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x
\end{aligned}
$$

Letting $y=\frac{x-\mu}{\sigma} \int_{-\infty}^{a} \frac{1}{\sqrt{2 \pi}} e^{\frac{-y^{2}}{2}} d y$

Taking derivative of $F_{Z}(a)$ gives

$$
f_{z}(a)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{a^{2}}{2}}
$$

Hence Z is the standard normal r.U.

- Let

$$
\phi(x)=P\{z \leqslant x\}
$$

be the CDF of Z.
Then

$$
\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-\frac{y^{2}}{2}} d y
$$

Fact 3

$$
E[Z]=0 \text { and } V(Z)=1
$$

Pf.

$$
\begin{aligned}
E[z] & =\int_{-\infty}^{\infty} x \cdot f(x) d x \\
& =\int_{-\infty}^{\infty} x \cdot \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x \\
& =-\left.\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}\right|_{-\infty} ^{\infty} \\
& =0 \\
E\left[Z^{2}\right] & =\int_{-\infty}^{\infty} x^{2} \cdot \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x \\
& =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} \cdot x \cdot\left(-e^{-\frac{x^{2}}{2}}\right)^{\prime} d x
\end{aligned}
$$

int by parts

$$
\begin{aligned}
& =\left.\frac{1}{\sqrt{2 \pi}} \cdot x \cdot\left(-e^{-\frac{x^{2}}{2}}\right)\right|_{-\infty} ^{\infty} \\
& \quad+\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} \cdot(x)^{\prime} d x \\
& =1
\end{aligned}
$$

Hence

$$
\begin{aligned}
V(z)_{1} & =E\left[Z^{2}\right]-(E[z])^{2} \\
& =1-0^{2}=1
\end{aligned}
$$

Fact 4. Let $Y=a X+b$, where $a, b \in \mathbb{R}$ and X is a cts riv.
Then (1) $E[Y]=a E[X]+b$
(2) $V(Y)=a^{2} V(X)$.

Pf. Let f be the $p d f$ of X.
Then

$$
\begin{aligned}
E[Y] & =\int_{-\infty}^{\infty}(a x+b) f(x) d x \\
& =a \int_{-\infty}^{\infty} x f(x) d x+b \int_{-\infty}^{\infty} f(x) d x \\
& =a E[x]+b
\end{aligned}
$$

$$
\begin{aligned}
E\left[Y^{2}\right]= & \int_{-\infty}^{\infty}(a x+b)^{2} f(x) d x \\
= & \int_{-\infty}^{\infty}\left(a^{2} x^{2}+2 a b x+b^{2}\right) f(x) d x \\
= & a^{2} \int_{-\infty}^{\infty} x^{2} f(x) d x+2 a b \int_{-\infty}^{\infty} x f(x) d x \\
& +b^{2} \int_{-\infty}^{\infty} f(x) d x \\
= & a^{2} E\left[X^{2}\right]+2 a b E[x]+b^{2}
\end{aligned}
$$

Hence

$$
\begin{aligned}
V(Y) & =E\left[Y^{2}\right]-(E[Y])^{2} \\
& =a^{2} E\left[X^{2}\right]+2 a b E[X]+b^{2} \\
& -(a E[X]+b)^{2} \\
& =a^{2}\left(E\left[X^{2}\right]-(E[X])^{2}\right) \\
& =a^{2} V(X)
\end{aligned}
$$

Fact 5. Let X be a normal ru. With parameters μ and σ^{2}.
Then $E[X]=\mu$

$$
V(x)=\sigma^{2}
$$

Pf. Let $Z=\frac{X-\mu}{\sigma}$. Then Z is
a standard normal ru. Hence $E[z]=0, V(z)=1$.
Now $X=\sigma z+\mu$. By lem 1,

$$
\begin{aligned}
& E[X]=\sigma E[z]+\mu=\sigma \cdot 0+\mu=\mu . \\
& V(X)=\sigma^{2} V(z)=\sigma^{2} \cdot 1=\sigma^{2} .
\end{aligned}
$$

The most important property of normal r.v is that it can be used to approximate a binomial ru with parameters (n, p) when n is lance.

The 1 (DeMoiure-Laplace Thy)
Let $0<p<1$. Let X_{n} be a binomial r.U with parameters (n, p). Then for given $a, b \in \mathbb{R}$,

$$
\begin{aligned}
& p\left\{a<\frac{X_{n}-n p}{\sqrt{n p(1-p)}}<b\right\} \\
& \xrightarrow{\text { as } n \rightarrow \infty} p\{a<Z<b\} \\
& =\int_{a}^{b} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} d x \\
& =\phi(b)-\phi(a) \text {. }
\end{aligned}
$$

- In other word, for langer n,
$\frac{x_{n}-n P}{\sqrt{n P(1-p)}}$ has approximately the
same distribution as Z.

Example 2. Let X be a binomial r.v
with parameters $n=40$ and $p=\frac{1}{2}$.
Find $P\{X=20\}$.

Solution: We first find the precise value of this prob.

$$
\begin{aligned}
P\{X=20\} & =\binom{40}{20} \cdot\left(\frac{1}{2}\right)^{40} \\
& \approx \cdot 1254
\end{aligned}
$$

Next we estimate this prob. by using normal distribution.

$$
\begin{aligned}
P\{X=20\}= & P\{19.5 \leqslant X \leqslant 20.5\} \\
\uparrow & (\text { Continuity correction }) \\
= & P\left\{\frac{-0.5}{\sqrt{10}} \leqslant \frac{X-20}{\sqrt{10}} \leqslant \frac{0.5}{\sqrt{10}}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \approx P\left\{\frac{-0.5}{\sqrt{10}} \leqslant z \leqslant \frac{0.5}{\sqrt{10}}\right\} \\
& \approx P\{-0.16 \leqslant z \leqslant 0.16\} \\
& f(x)=2 \times\left(\phi(0.16)-\frac{1}{2}\right) \\
& =0.12 \times\left(0.5636-\frac{1}{2}\right) \\
& =0.1274
\end{aligned}
$$

The values of $\Phi(x)$ for nonnegative x are given in Table 5.1. For negative values of $x, \Phi(x)$ can be obtained from the relationship

$$
\begin{equation*}
\Phi(-x)=1-\Phi(x) \quad-\infty<x<\infty \tag{4.1}
\end{equation*}
$$

The proof of Equation (4.1), which follows from the symmetry of the standard normol density, is left as an exercise. This equation states that if Z is a standard normal random variable, then

$$
P\{Z \leq-x\}=P\{Z>x\} \quad-\infty<x<\infty
$$

§5.5 Exponential r.U.
Def. Let $\lambda>0$. Say X is an exponential ru. with parameter λ if X has the following density

$$
f(x)=\left\{\begin{array}{cc}
\lambda e^{-\lambda x} & \text { if } x>0 \\
0 & \text { otherwise. }
\end{array}\right.
$$

Example 3. Find $E[X]$ and $V(X)$

Solution:

$$
\begin{aligned}
E[x] & =\int_{-\infty}^{\infty} x f(x) d x \\
& =\int_{0}^{\infty} x \lambda e^{-\lambda x} d x \\
& =\int_{0}^{\infty} x \cdot\left(-e^{-\lambda x}\right)^{\prime} d x
\end{aligned}
$$

int by parts

$$
\begin{aligned}
& =\left.x \cdot\left(-e^{-\lambda x}\right)\right|_{0} ^{\infty}+\int_{0}^{\infty} e^{-\lambda x} \cdot(x)^{\prime} d x \\
& =0+\int_{0}^{\infty} e^{-\lambda x} d x \\
& =0+\frac{1}{\lambda} \int_{0}^{\infty} \lambda e^{-\lambda x} d x \\
& =\frac{1}{\lambda}
\end{aligned}
$$

Notice that

$$
\begin{aligned}
E\left[X^{2}\right] & =\int_{-\infty}^{\infty} x^{2} f(x) d x \\
& =\int_{0}^{\infty} x^{2} \lambda e^{-\lambda x} d x \\
& =\int_{0}^{\infty} x^{2} \cdot\left(-e^{-\lambda x}\right)^{\prime} d x
\end{aligned}
$$

int by parts

$$
\begin{aligned}
& =\left.x^{2} \cdot\left(-e^{-\lambda x}\right)\right|_{0} ^{\infty}+\int_{0}^{\infty} e^{-\lambda x} \cdot\left(x^{2}\right)^{\prime} d x \\
& =0+\int_{0}^{\infty} 2 x e^{-\lambda x} d x \\
& =0+\frac{2}{\lambda} \int_{0}^{\infty} x \cdot \lambda e^{-\lambda x} d x \\
& =\frac{2}{\lambda} E[x] \\
& =\frac{2}{\lambda^{2}}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left[X^{2}\right]-E[X]^{2} \\
& =\frac{2}{\lambda^{2}}-\left(\frac{1}{\lambda}\right)^{2}=\frac{1}{\lambda^{2}} .
\end{aligned}
$$

Exec 4. Let X be an exponential ru with parameter λ. Show that

$$
P\{x>s+t \mid x>t\}=P\{x>s\}
$$

for any $s, t>0$.
Pf. For any $a>0$,

$$
\begin{aligned}
P\{x>a\} & =\int_{a}^{+\infty} f(x) d x \\
& =\int_{a}^{+\infty} \lambda e^{-\lambda x} d x \\
& =-\left.e^{-\lambda x}\right|_{a} ^{+\infty} \\
& =e^{-\lambda a}
\end{aligned}
$$

Write $E=\{x>s+t\}$ and $F=\{x>t\}$.
Then $E \cap F=\{X>s+t\}$.

Hence

$$
\begin{aligned}
& P\{X>s+t \mid x>t\} \\
= & P(E \mid F) \\
= & \frac{P(E \cap F)}{P(F)} \\
= & \frac{P(E)}{P(F)} \\
= & P\{x>s+t\} / P\{x>t\} \\
= & e^{-\lambda(s+t)} / e^{-\lambda t} \\
= & e^{-\lambda s} \\
= & P\{x>s\} .
\end{aligned}
$$

