Math 3-80 23-11-30 Review Thm (The weak law of large numbers) Let X1, X2, ..., Xn, ... be an i.i.d sequence of ru's, having a finite mean M. Then for any 2>0, $P\left\{ \left| \frac{X_1 + \dots + X_n}{n} - \mu \right| \ge \varepsilon \right\} \to o \text{ as } n \to \infty.$ Thm (The Central limit Thm). Let X1, ..., Xn, ..., be an i.i.d. sequence of r.u.'s, each having finite mean µ and vaniance of. Then VaER, $P\left\{\begin{array}{c} \frac{X_{1}+\dots+X_{n}-n\,\mu}{\sqrt{n}\,\mathcal{G}}\leq 0\end{array}\right\}\longrightarrow \Phi(0)=\int_{\overline{\Delta t}}\int_{-\infty}^{\alpha}e^{-\frac{x^{2}}{2}}dx,$ as $n \to \infty$.

To prove the CLT, we state a result without
proof.
Lem 1. Let
$$Z_1, \dots, Z_n, \dots$$
 be a sequence of ru's
with distribution functions FZ_n . Let Z be
a r.v. with distribution function FZ_n .
Suppose $M_{Z_n}(t) \rightarrow M_Z(t)$ for all $t \in \mathbb{R}$
as $h \rightarrow \infty$. (Recall $M_Z(t) := E[e^{tZ}]$)
Then
 $FZ_n(t) \rightarrow FZ(t)$ for each t at
which F_Z is cts, as $n \rightarrow \infty$.
Pf of the CLT.
First assume $\mu = 0$, $\sigma^2 = 1$.
Let $Z_n = \frac{X_1 + \dots + X_n}{\sqrt{n}}$, $n = 1, 2, \dots$.
Let Z be the standard normal r.V.

Recall
$$M_{Z}(t) = e^{t^{2}/2}$$
, $t \in \mathbb{R}$.
Hence we only need to prove for $t \in \mathbb{R}$,
 $M_{Z_{n}}(t) \longrightarrow e^{t^{2}/2}$ as $n \rightarrow \infty$.
Notice that $t \cdot \frac{X_{1} + \cdots + X_{n}}{\sqrt{n}}$
 $M_{Z_{n}}(t) = E[e^{t \cdot \frac{X_{1} + \cdots + X_{n}}{\sqrt{n}}}]$
 $= \prod_{j=1}^{n} E[e^{tX_{j}/\sqrt{n}}]$
 $= (M_{X}(\frac{t}{\sqrt{n}}))^{n}$, where $X = X_{1}$
To show D , it is equivalent to show
(a) $n \log M_{X}(\frac{t}{\sqrt{n}}) \rightarrow t^{2}/2$ as $n \rightarrow \infty$.
For convenience, we write
 $L(t) = \log M_{X}(t)$.
Clearly, $L(o) = 0$.
Notice that
 $L'(t) = \frac{M'_{X}(t)}{M_{X}(t)}$, $L''(t) = \frac{M''_{X}(t)M_{X}(t) - (M'_{X}(t))^{2}}{M_{X}(t)^{2}}$

In particular

$$L'(o) = \frac{M_{X}'(o)}{M_{X}(o)} = \frac{E[X]}{1} = \mu = 0$$

$$L''(o) = \frac{M_{X}'(o) \cdot M_{X}(o) - M_{X}'(o)^{2}}{M_{X}(o)^{2}} = \frac{E[X^{2}]}{1}$$

$$= Var(X) + E[X]^{2}$$

$$= 1$$
Hence
Hence

$$\lim_{n \to \infty} n \cdot L(\frac{t}{\sqrt{n}}) = \lim_{n \to \infty} \frac{L(\frac{t}{\sqrt{n}})}{(\frac{t}{\sqrt{n}})^{2}}$$

$$\lim_{k \to 0} \frac{L(tx)}{x^{2}}$$

$$\lim_{k \to 0} \frac{L(tx)}{x^{2}}$$

$$= \lim_{k \to 0} \frac{L'(tx) \cdot t}{2x}$$

$$= \lim_{k \to 0} \frac{L'(tx) \cdot t^{2}}{2x}$$

$$= -\frac{t^{2}}{2} L''(o) = \frac{t^{2}}{2}.$$

In the general case,

$$\frac{X_{1}+\dots+X_{n}-n\mu}{\sqrt{n}+\sigma} = \frac{X_{1}-\mu}{\sigma} + \dots+ \frac{X_{n}-\mu}{\sigma}$$

$$\frac{X_{1}+\dots+X_{n}-n\mu}{\sqrt{n}+\sigma} = \frac{\sqrt{n}}{\sqrt{n}}$$
Notice that $\widehat{X}_{1} = \underbrace{X_{1}-\mu}{\sqrt{n}}$ has mean o
and variance 1
Since $\widehat{X}_{1}, \dots, \widehat{X}_{n}, \dots$ are i.i.d with
mean o and variance 1, the distribution

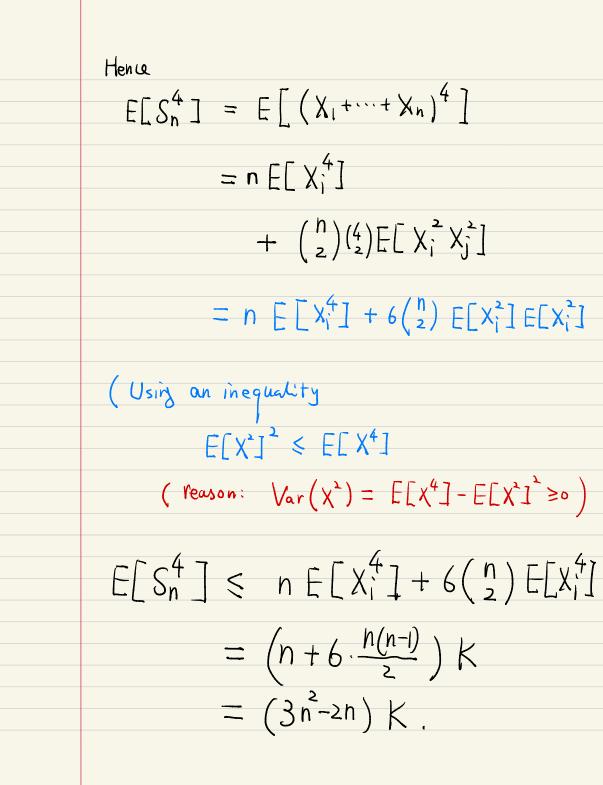
$$\frac{\widehat{X}_{1}+\dots+\widehat{X}_{n}}{\sqrt{n}} = Converges to the standard
Normal distribution.$$

Thin 3 (The strong law of large numbers).
Let X1, ..., Xn, ..., be an i.i.d. sequence of n.u.'s
with a finite mean
$$\mu$$
. Then with prob. 1,
 $X_1 + \dots + X_n \longrightarrow \mu$ as $n \rightarrow \infty$.
In other word,
 $P\{\lim_{n \to \infty} \frac{X_1 + \dots + X_n}{n} = \mu\} = 1.$
Lem 4. Assume X is a non-negative n.u. which may
take the value $+\infty$. Suppose that $E[X] < \infty$.
Then $P\{X < \infty\} = 1.$
Pf. $P\{X = \infty\} \leq P\{X \ge n\} \leq \frac{E[X]}{n} \rightarrow 0.$
 $P[P] = P[M] = 1.$

We will the thin under an additional assumption

$$E[X_{i}^{4}] = K < \infty$$
WLOG, assume $\mu = 0$.
White $S_{n} = X_{1} + \dots + X_{n}$.
We will estimate

$$E[S_{n}^{4}] = E[(X_{1} + \dots + X_{n})^{4}]$$
Expand $(X_{1} + \dots + X_{n})^{4}$ in terms of
 X_{i}^{4} , $X_{i}^{3}X_{j}$, $X_{i}^{2}X_{j}^{2}$, $X_{i}^{2}X_{j}X_{k}$, $X_{i}X_{j}X_{k}X_{k}$
with distinct $\hat{v}, \hat{j}, k, \ell$.
Notice that $E[X_{i}^{3}X_{j}] = E[X_{i}^{3}]E[X_{j}]E[X_{k}]$
 $=0$
 $E[X_{i}^{2}X_{j}X_{k}X_{\ell}] = 0$



< 3n°K $E\left[\frac{S_n^4}{n^4}\right] \leq \frac{3K}{n^2}$ Hena $\sum_{n=1}^{\infty} E\left[\left(\frac{S_n}{n}\right)^4\right] \leq \sum_{n=1}^{\infty} \frac{3K}{n^2} < \infty.$ $E\left[\sum_{n=1}^{\infty} \left(\frac{S_n}{n}\right)^4\right] = \sum_{n=1}^{\infty} E\left[\left(\frac{S_n}{n}\right)^4\right] < \infty$ Thus Let $X = \sum_{n=1}^{\infty} \left(\frac{S_n}{n}\right)^4$. Then X is a r.v., non-negative (may take the value (a However $E[X] < \infty$ By Lem 4, $P \{ X < \infty \} = 1$. Hence $P\left\{\sum_{n=1}^{\infty} \left(\frac{S_n}{n}\right)^4 < \infty\right\} = 1$ However $\sum_{n=1}^{\infty} \left(\frac{S_n}{n}\right)^4 < \infty \implies \frac{S_n}{n} \rightarrow 0 \quad as \quad n \rightarrow \infty$ Hence $P \left\{ \lim_{n \to \infty} \frac{S_n}{n} = 0 \right\} = 1.$

Here with Prob. 1,

$$\frac{S_n}{n} = \frac{X_1 + \dots + X_n}{n} \rightarrow 0$$
If $\mu \neq 0$, then letting $X_n = X_n - \mu$
applying the SLLN to (X_n) gives
$$\frac{X_1 + \dots + X_n}{n} \rightarrow 0$$
 almost sure.
($\Rightarrow X_1 + \dots + X_n \rightarrow \mu$ almost sure.
($\Rightarrow X_1 + \dots + X_n \rightarrow \mu$ almost sure.
($\Rightarrow X_1 + \dots + X_n \rightarrow \mu$ (a