Math 3=80
Periew
Conditional expectation
$$E[X|Y=y]$$

Calculate expectation by conditioning
 $E[X] = E[E[X|Y]]$.
§ 7.7 Moment generating functions.
Def. Let X be a r.v. and te R. Definis
 $M(t) = E[e^{tX}]$
and we call $M(t)$ the moment generating function of X
Remark: Since
 $e^{tX} = \sum_{n=0}^{\infty} \frac{t^n}{n!} X^n$.
we have
 $M(t) = \sum_{n=0}^{\infty} \frac{t^n}{n!} E[X^n]$

$$(-t_0, t_0)$$
 of 0, then

$$M^{(n)}(0) = E[X^{n}], n = 1, 2, ...$$

Example 2. Let X be a binomial r.u. with parameters (n, p). Calcutate M(t).

$$M(t) = E[e^{tX}I = \sum_{\substack{k=0\\k=0}}^{n} e^{tk} \cdot {\binom{n}{k}} e^{k} \cdot {\binom{n}{k}} e^{k} \cdot {\binom{n}{k}}^{n-k}$$

$$= \sum_{\substack{k=0\\k=0}}^{n} {\binom{n}{k}} (e^{t}p)^{k} (i-p)^{n-k}$$

$$= (e^{t}p + (i-p))^{k}$$
Example 3. Let X be the Poisson r.u. with parameter λ .
Calculate M(t).
Solution.

$$M(t) = E[e^{tX}I]$$

$$= \sum_{\substack{n=0\\k=0}}^{\infty} e^{tn} \cdot \frac{\lambda^{n}}{n!} e^{-\lambda}$$

$$= \sum_{\substack{n=0\\k=0}}^{\infty} \frac{(e^{t}\lambda)^{n}}{n!} e^{-\lambda}$$

$$= e^{e^{t}\lambda} e^{-\lambda}$$

$$= e^{\lambda(e^{t}-i)}$$
Example 4. Let X be a standard normal r.u. Calculate M(t).
Solution:

$$M(t) = E[e^{tX}I = e^{t}\sum_{\substack{n=0\\k=0}}^{\infty} e^{t}x e^{-\frac{x^{2}}{2}} dx$$

$$= e^{t/x}$$

$$= e^{t/x}$$
Example 5. Let X be a normal Y.U. With mean μ and Uaniance.
Calculate M(t) for X.
Solution: Let $Z = \frac{X+\mu}{S}$. Then Z is a standard normal
Y.U.
Head
 $Head = e^{t\mu}$. $E[e^{t\sigma^2}]$
 $= e^{t\mu} \cdot e^{t\sigma^2}$
 $= e^{t\mu} \cdot e^{t\sigma^2}$

Thm 7. If
$$M_X(t) = M_Y(t)$$
 on a heighborhood (-to, to)
of zero, then X, Y have the same (camulative) disfultivity
In this sense, we say that the moment generating function
Uniquely determines the distribution.
Chap 8. Limiting thms.
§8.1 Introduction
@: Let Xi, Xi, ..., be a sequence of independent, identically distributed
r.v.s. What can we say about the limiting behavior of
 $\frac{X_1 + \dots + X_n}{n}$ as $n \to \infty$?
§ 8.2. Two basic inequality:
Let X be a non-negative r.v. Then for any $a > 0$,
 $p\{X \ge a\} \le \frac{E[X]/a}{a}$.
Pf. Let $I = \begin{cases} 1 & if X \ge a \\ 0 & o therwise \end{cases}$

Then I is a MU. so that
$$I \leq \frac{x}{a}$$

(here we Use
the fact $X \geq 0$)
So $E[I] \leq E[-\frac{x}{a}]$
But $E[I] = 1 \cdot P\{I=1\} + 0 \cdot P\{I=0\}$
 $= P\{X \geq a\}$.
Hence $P\{X \geq a\} \leq E[X]/a$.
Prop 9. (Chebyshev's inequality)
Let X be a r.u. with finite mean μ and Vaniana σ^2 .
Then for any $E \geq 0$,
 $P\{|X-\mu| \geq E\} \leq \sigma^2 \epsilon^2$
Pf. Let $Y = |X-\mu|^2$. Applying Mandeov inequality to Y
gives
 $P\{|X-\mu| \geq E\} = P\{Y \geq E^2\} \leq \frac{E[Y]}{E^2}$

 $\leq E\left[\left(X-\mu\right)^{2}\right]/\Sigma^{2}$ $= \sqrt{ar}(X)/\Sigma^{2} = O^{2}/\Sigma^{2}.$

Example

Suppose that it is known that the number of items produced in a factory during a week is a random variable with mean 50.

(a) What can be said about the probability that this week's production will exceed 75?

(b) If the variance of a week's production is known to equal 25, then what can be said about the probability that this week's production will be between 40 and 60?

Solution: Let X be the number of items produced
In a week. E[X]=50
Then
(a) By Markov, P{X>75} <
$$\frac{E[X]}{75} = \frac{2}{3}$$
.
(b) Since $S^2 = 25$,

 $P\{40 < X \leq 60\} = P\{||X-50| \leq 10\}$ $\geq 1 - \frac{\sigma^2}{10^2}$ $\geq 1 - \frac{25}{100} = \frac{3}{4} = 0.75.$ 12