Math 3280

Review

- Conditional expectation $E[X \mid Y=y]$
- Calculate expectation by conditioning

$$
E[X]=E[E[X \mid Y]]
$$

5 7.7. Moment generating functions.
Def. Let X be a r.v. and $t \in \mathbb{R}$. Define

$$
M(t)=E\left[e^{t x}\right]
$$

and we call $M(t)$ the moment generating function of X

Remark: - Since

$$
e^{t x}=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} x^{n}
$$

we have

$$
\begin{equation*}
M(t)=\sum_{n=0}^{\infty} \frac{t^{n}}{n!} E\left[X^{n}\right] \tag{1}
\end{equation*}
$$

- $M(0)=1$.
- For some random variables $X, M(t)$ may not exist for some $t \in \mathbb{R}$.

For instance

$$
P\{X=n\}=\frac{1}{n(n+1)}, \quad n=1,2, \cdots
$$

Then $E\left[X^{k}\right]=\infty \quad \forall \quad k=1,2, \cdots$, so

$$
E\left(e^{t X}\right)=\infty \quad \forall \quad t>0
$$

Prop 1. Suppose $M(t)$ exists and is finite on a neighbor $\left(-t_{0}, t_{0}\right)$ of 0 , then

$$
M^{(n)}(0)=E\left[X^{n}\right], \quad n=1,2, \cdots
$$

Example 2. Let X be a binomial r.U. with parameters (n, p).
Calculate $M(t)$.

$$
\begin{aligned}
M(t)=E\left[e^{t x}\right] & =\sum_{k=0}^{n} e^{t k} \cdot\binom{n}{k} p^{k} \cdot(1-p)^{n-k} \\
& =\sum_{k=0}^{n}\binom{n}{k}\left(e^{t} p\right)^{k}(1-p)^{n-k} \\
& =\left(e^{t} p+(1-p)\right)^{k}
\end{aligned}
$$

Example 3. Let X be the Poisson rU. With parameter λ. Calculate $M(t)$.

Solution.

$$
\begin{aligned}
M(t) & =E\left[e^{t x}\right] \\
& =\sum_{n=0}^{\infty} e^{t n} \cdot \frac{\lambda^{n}}{n!} e^{-\lambda} \\
& =\sum_{n=0}^{\infty} \frac{\left(e^{t} \lambda\right)^{n}}{n!} e^{-\lambda} \\
& =e^{e^{t} \lambda} \cdot e^{-\lambda} \\
& =e^{\lambda\left(e^{t}-1\right)}
\end{aligned}
$$

Example 4. Let X be a standard normal ru. Calculate $M(t)$.
Solution:

$$
\begin{aligned}
M(t)=E\left[e^{t x}\right] & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{t x} \cdot e^{-\frac{x^{2}}{2}} d x \\
& =\frac{1}{\sqrt{2 \pi}} e^{\frac{t^{2}}{2}} \cdot \int_{-\infty}^{\infty} e^{-\frac{(x-t)^{2}}{2}} d x
\end{aligned}
$$

$$
=e^{t^{2} / 2}
$$

Example 5. Let X be a normal riv. with mean μ and Variance.
Calculate $M(t)$ for X.
Solution: Let $Z=\frac{X-M}{\sigma}$. Then Z is a standard normal ru.

$$
\begin{aligned}
\text { Hence } \\
\begin{aligned}
M(t)=\left[e^{t X}\right] & =E\left[e^{t(\mu+\sigma z)}\right] \\
& =e^{t \mu} \cdot E\left[e^{t \sigma z}\right] \\
& =e^{t \mu} \cdot e^{t^{2} \sigma^{2} / 2} \\
& =e^{\frac{t^{2} \sigma^{2}}{2}+t \mu}
\end{aligned} .
\end{aligned}
$$

Prop 6. If X, Y are independent, then

$$
M_{X+Y}(t)=M_{X}(t) M_{Y}(t)
$$

Pf. $\quad M_{X+Y}(t)=E\left[e^{t x+t y}\right]$

$$
\begin{aligned}
& =E\left[e^{t x} \cdot e^{t Y}\right] \\
& =E\left[e^{t x}\right] \cdot E\left[e^{t y}\right] \\
& =M_{X}(t) M_{Y}(t)
\end{aligned}
$$

Thy 7. If $M_{X}(t)=M_{Y}(t)$ on a neighborhood $\left(-t_{0}, t_{0}\right)$ of zero, then X, Y have the same (cumulative) distribution In this sense, we say that the moment generating function uniquely determines the distribution.

Chap 8. Limiting thms.
§8.1 Introduction
Q: Let X_{1}, X_{2}, \cdots, be a sequence of inde pendent, identically distributed r.v.'s. What can we say about the limiting be havior of

$$
\frac{x_{1}+\cdots+x_{n}}{n} \text { as } n \rightarrow \infty \text { ? }
$$

§8.2. Two basic inequalities
Prop 8. (Markov inequality)
Let X be a non-negative r.U. Then for any $a>0$,

$$
P\{x \geq a\} \leqslant E[x] / a .
$$

Pf. Let $I= \begin{cases}1 & \text { if } X \geqslant a \\ 0 & \text { otherwise. }\end{cases}$

Then I is a rus. so that $I \leqslant \frac{X}{a}$
(here we use the fact $x \geqslant 0$)
So $E[I] \leqslant E\left[\frac{X}{a}\right]$
But $E[I]=1 \cdot P\{I=1\}+0 \cdot P\{I=0\}$

$$
=P\{X \geq a\} .
$$

Hence $P\{X \geq a\} \leqslant E[X] / a$.

Prop 9. (Chebyshev's inequality)
Let X be a ru. with finite mean μ and variance σ^{2}. Then for any $\varepsilon>0$,

$$
p\{|X-\mu| \geqslant \varepsilon\} \leqslant \sigma^{2} / \varepsilon^{2}
$$

Pf. Let $Y=|X-\mu|^{2}$. Applying Markov inequality to Y
gives

$$
P\{|X-\mu| \geqslant \varepsilon\}=P\left\{Y \geqslant \varepsilon^{2}\right\} \leqslant \frac{E[Y]}{\varepsilon^{2}}
$$

$$
\begin{aligned}
& \leqslant E\left[(X-\mu)^{2}\right] / \varepsilon^{2} \\
& =\operatorname{Var}(X) / \varepsilon^{2}=\sigma^{2} / \Sigma^{2}
\end{aligned}
$$

Example.
Suppose that it is known that the number of items produced in a factory during a week is a random variable with mean 50.
(a) What can be said about the probability that this week's production will exceed 75 ?
(b) If the variance of a week's production is known to equal 25 , then what can be said about the probability that this week's production will be between 40 and $60 ?$

Solution: Let X be the number of items produced in a week. $E[X]=50$

Then
(a) By Markov, $P\{X>75\} \leqslant \frac{E[X]}{75}=\frac{2}{3}$.
(b) Since $\sigma^{2}=25$,

$$
\begin{aligned}
& P\{40 \leqslant X \leqslant 60\}=p\{|X-50| \leqslant 10\} \\
& \geqslant 1-\frac{\sigma^{2}}{10^{2}} \\
& \geqslant 1-\frac{25}{100}=\frac{3}{4}=0.75 .
\end{aligned}
$$

