Math 3280 23-11-20

Review.

$$
\text { - } \begin{aligned}
\operatorname{Cov}(X, Y) & =E[(X-E[X])(Y-E[Y])] \\
& =E[X Y]-E[X] E[Y]
\end{aligned}
$$

- $\operatorname{Cov}(X, Y)=0$ if X, Y are independent.

Prop 1. (1) $\operatorname{Cov}(X, Y)=\operatorname{Cow}(Y, X)$.
(2) $\operatorname{Cov}(X, X)=\operatorname{Var}(X)$.
(3) $\operatorname{Cov}(a X, Y)=a \operatorname{Cov}(X, Y), \quad a \in \mathbb{R}$.
(4) $\operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{j=1}^{m} Y_{j}\right)$

$$
=\sum_{i=1}^{n} \sum_{j=1}^{m} \operatorname{Cov}\left(X_{i}, Y_{j}\right)
$$

(1), (3), (4) imply that $\operatorname{Cov}(\cdot, \cdot)$ is b_{i}-linear.

Pf. Let us prove (4) only. Write $\mu_{i}=E\left[X_{i}\right]$,

$$
v_{i}=E\left[Y_{j}\right]
$$

Then by definition,

$$
\begin{aligned}
& \operatorname{Cov}\left(\sum_{i=1}^{n} X_{i}, \sum_{j=1}^{m} Y_{j}\right)=E\left[\left(\sum_{i=1}^{n} X_{i}-\sum_{i=1}^{n} \mu_{i}\right) \cdot\left(\sum_{j=1}^{m} Y_{j}-\sum_{j=1}^{m} V_{j}\right)\right] \\
&=E\left[\sum_{i=1}^{n}\left(X_{i}-\mu_{i}\right) \sum_{j=1}^{m}\left(Y_{j}-V_{j}\right)\right] \\
&=E\left[\sum_{i=1}^{n} \sum_{j=1}^{m}\left(X_{i}-\mu_{i}\right)\left(Y_{j}-V_{j}\right)\right] \\
& \text { By the linearity of } E \\
&=\sum_{i=1}^{n} \sum_{j=1}^{m} E\left[\left(X_{i}-H_{i}\right)\left(Y_{j}-V_{j}\right)\right] \\
&=\sum_{i=1}^{n} \sum_{j=1}^{m} \operatorname{Cov}\left(X_{i}, Y_{j}\right) .
\end{aligned}
$$

Corollary 2. $\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)+2 \cdot \sum_{1 \leqslant i<j \leqslant n} \operatorname{Cov}\left(X_{i}, X_{j}\right)$. Moreover if X_{1}, \cdots, X_{n} are pairwise independent, then

$$
\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)
$$

§7.5 Conditional expectations.
Def. If X and Y are discrete, then the conditional expectation of X given $Y=y$, is

$$
E[X \mid Y=y]:=\sum_{x} x P\{X=x \mid Y=y\}
$$

provided that $P\{Y=y\}>0$.

Def. In the case when X and Y are jointly cts with a density $f(x, y)$, the condition el expectation of X given $Y=y$, is defined by

$$
E[X \mid Y=y]=\int_{-\infty}^{\infty} x \cdot f_{X \mid Y}(x \mid y) d x
$$

provided that $f_{Y}(y)>0$, where

$$
f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y}(y)}
$$

Example 1. Let X, Y be jointly cts with a density

$$
f(x, y)=\left\{\begin{array}{cl}
e^{-x / y} \cdot e^{-y} / y & \text { if } x, y>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

Calculate $E[X \mid Y=y], \quad y>0$.
Solution: $\quad f_{Y}(y)=\int_{-\infty}^{\infty} f(x, y) d x$

$$
\begin{aligned}
& =\int_{0}^{\infty} e^{-x / y} e^{-y} / y d x \\
& =-\left.e^{-x / y} e^{-y}\right|_{X=0} ^{\infty} \\
& =e^{-y}, \quad \text { if } \quad y>0 \\
f_{X \mid Y}(x \mid y) & =\frac{f(x, y)}{f_{Y(y)}} \\
& =e^{-x / y} / y \text { if } x, y>0
\end{aligned}
$$

$$
\begin{aligned}
& E[X \mid Y=y]=\int_{-\infty}^{\infty} x f_{X \mid Y}(x \mid y) d x \\
&=\int_{0}^{\infty} x \cdot e^{-x / y} / y d x \\
& I_{\text {Int }}+\text { by Part } \\
&\left.x \cdot\left(-e^{-x / y}\right)\right|_{x=0} ^{+\infty}+\int_{0}^{\infty} e^{-x / y} \cdot d x \\
&=0+\left.\left(-y e^{-x / y}\right)\right|_{x=0} ^{+\infty} \\
&=y \text { if } y>0 .
\end{aligned}
$$

Now white
$E[X \mid Y]$ as a function of Y by

$$
y \longmapsto E[X \mid Y=y]
$$

$E[X \mid Y]$ is a r.V., the value of which depends on the value of Y.

Prop 2. $E[X]=E[E[X \mid Y]]$
Pf. We only prove it in the discrete care.

$$
\begin{aligned}
E[E[X \mid Y]] & =\sum_{y} E[X \mid Y=y] \cdot P_{Y}(y) \\
& =\sum_{Y} \cdot \sum_{X} X \cdot P\{X=x \mid Y=y\} \cdot P_{Y}(y) \\
& =\sum_{y} \sum_{x} X P\{X=x, Y=y\} \\
& =\sum_{x} \sum_{y} X P\{X=x, Y=y\} \\
& =\sum_{X} x P\{X=x\}=E[X]
\end{aligned}
$$

Example 3
A miner is trapped in a mine containing 3 doors. The first door leads to a tunnel that will take him to safety after 3 hours of travel. The second door leads to a tunnel that will return him to the mine after 5 hours of travel. The third door leads to a tunnel that will return him to the mine after 7 hours. If we assume that the miner is at all times equally likely to choose any one of the doors, what is the expected length of time until he reaches safety?

Solution: Let X denote the length of time (in hours) until the miner reaches safety

Let Y denote the door that he choose in the first time.

By Prop 2,

$$
\begin{aligned}
E[X]= & E[E[X \mid Y]] \\
= & E[X \mid Y=1] \cdot P\{Y=1\} \\
& +E[X \mid Y=2] \cdot P\{Y=2\}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
& +E[X \mid Y=3] \cdot P\{Y=3\} \\
= & \frac{1}{3}(E[X \mid Y=1]
\end{array} \quad+E[X \mid Y=2]\right)
$$

Solving this equation, we obtain

$$
E[X]=3+5+7=15 \quad(\text { hours })
$$

