Review.

Let X, Y be independent cts r.u.'s with densities f_X , f_Y respectively, then X+Y has a density given by $f_{X+Y}(\alpha) = f_X * f_Y(\alpha)$ = $\int_{-\infty}^{\infty} f_X(a-y) f_Y(y) dy$ = $\int_{-\infty}^{\infty} f_{\chi}(x) f_{\gamma}(\alpha-x) dx$. . The discrete core : both X and Y are discrete. We would like to Calculate $P\{X+Y=a\}.$ It is easy to see that $P\{X+Y=a\} = \sum P\{X=x, X+Y=a\}$ $= \sum_{x} p \{ \chi = x, Y = \alpha - x \}$ $= \sum_{x} p\{\chi=x\} p\{\chi=a-x\}$

Example 1. Let X, Y be independent Poisson r.U.'s
With parameters
$$\lambda_1, \lambda_2, \text{ resp.}$$

Calculate the distribution of X+Y.
Solution: $P\{X=R\} = e^{-\lambda_1} \cdot \lambda_1^R / R!, R=0, 1, 2, \cdots$
 $P\{Y=R\} = e^{-\lambda_2} \cdot \lambda_2^R / R!, R=0, 1, 2, \cdots$
For $n=0, 1, 2, \cdots$
 $P\{X+Y=n\} = \sum_{R=0}^{\infty} P\{X=R\} p\{Y=n-k\}$
(but $P\{Y=n-k\} = 0 \text{ if } R>n$)
 $= \sum_{R=0}^{n} P\{X=R\} P\{Y=n-k\}$
 $= \sum_{R=0}^{n} e^{-\lambda_1} \cdot \frac{R}{R!} e^{-\lambda_2} \cdot \frac{n-k}{(n-k)!}$

$$= e^{-\lambda_{1}-\lambda_{2}} \frac{1}{n!} \sum_{k=0}^{n} {n \choose k} \frac{\lambda_{1}}{\lambda_{2}}$$
By the binomial Then
$$= e^{-\lambda_{1}-\lambda_{2}} \frac{(\lambda_{1}+\lambda_{2})^{n}}{(\lambda_{1}+\lambda_{2})^{n}}$$
(Recall $(a+b)^{n} = \sum_{k=0}^{n} {n \choose k} \frac{a+b}{b}$)
Hence X+Y has the Poisson distribution with
parameter $\lambda_{1}+\lambda_{2}$.

§ 6.4 Conductional distribution.

1. Discrete case.

Def. Let X, Y be two discrete r.u.'s.

Then
$$p\{X=x \mid Y=y\} = \frac{P\{X=x, Y=y\}}{P\{Y=y\}},$$
provided that $P\{Y=y\} > 0$.

2. Suppose that X and Y are jointly cts with
density
$$f(x,y)$$
.
Def. The conditional density function of X
given $Y=y$ is given by
 $f_{X|Y}(x|y) := \frac{f(x,y)}{f_Y(y)}$,
provided that $f_Y(y) > 0$.
Def. For $A \subset IR$, the conditional prob. of
X taking values in A given $Y=y$ is given by
 $P\{X \in A \mid Y=y\} = \int_A f_{X|Y}(x|y) dx$
In particular,
 $F_{X|Y}(a|y) := P\{X \le a| Y=y\}$
 $= \int_{-\infty}^{a} f_{X|Y}(x|y) dx$.

Remark: If X and Y are independent,
then
$$f_{X|Y}(x|y) = f_{X}(x)$$
.
(since in such case $f(x, y) = f_{X}(x) f_{Y}(y)$
Remark: One may view
 $P\{X \in A \mid Y = y\}$
 $= \lim_{z \to 0} P\{X \in A \mid y \le Y < y + \varepsilon\}$
 $= \lim_{z \to 0} \frac{P\{X \in A, y - \varepsilon < Y < y + \varepsilon\}}{P\{y - \varepsilon < Y < y + \varepsilon\}}$

Example 2. Suppose the joint density of X and Y
is given by
$$-x/y = -y/y$$
 if x>0, y>0
 $f(x, y) = \begin{cases} e^{-y}/y & \text{if x>0}, y>0 \\ e^{-y}/y & \text{if x>0}, y>0 \end{cases}$
Find $P\{X>1 \mid Y=y\}$.
Solution: $f_{Y}(y) = \int_{-\infty}^{\infty} f(x, y) dx$
 $= \int_{0}^{\infty} e^{-x/y} e^{-y}/y dx$ (if $y>0$)
 $= -e^{-x/y} e^{-y}|_{x=0}^{\infty}$
 $= e^{-y}$ if $y>0$.
Hence for $y>0$, $\frac{f(x, y)}{f_{X|Y}(x|y)} = \frac{f(x, y)}{f_{Y}(y)} = \frac{-x/y}{f_{Y}(y)}$

Therefore $P\{X>1|Y=y\} = \int_{1}^{\infty} \frac{-x/y}{y} dx$ $e^{-x/y} = x_{-1}^{\infty}$ $= \rho^{-\frac{1}{y}}$ ìf 420 11