Math $3280 \mathrm{~A} \quad 23-11-13$
Review
Let X, Y be independent cts r.v.'s with densities f_{X}, f_{Y} respectively, then $X+Y$ has a density given by

$$
\begin{aligned}
f_{X+Y}(a) & =f_{X} * f_{Y}(a) \\
& =\int_{-\infty}^{\infty} f_{X}(a-y) f_{Y}(y) d y \\
& =\int_{-\infty}^{\infty} f_{X}(x) f_{Y}(a-x) d x
\end{aligned}
$$

- The discrete case: both X and Y are discrete.

We would like to Calculate

$$
p\{X+Y=a\}
$$

It is easy to see that

$$
\begin{aligned}
P\{X+Y=a\} & =\sum_{x} P\{X=x, X+Y=a\} \\
& =\sum_{x} P\{X=x, Y=a-x\} \\
& =\sum_{x} P\{X=x\} P\{Y=a-x\}
\end{aligned}
$$

Example 1. Let X, Y be independent Poisson r.U.'s with parameters λ_{1}, λ_{2}, resp.
Calculate the distribution of $X+Y$.

Solution: $\quad P\{X=k\}=e^{-\lambda_{1}} \cdot \lambda_{1} / k!, \quad k=0,1,2, \cdots$

$$
P\{Y=k\}=e^{-\lambda_{2}} \lambda_{2}^{k} / k!, \quad k=0,1,2, \cdots
$$

For $n=0,1,2, \cdots$;

$$
\begin{aligned}
P\{X+Y=n\}= & \sum_{k=0}^{\infty} P\{X=k\} p\{Y=n-k\} \\
& (\text { but } P\{Y=n-k\}=0 \text { if } k>n) \\
= & \sum_{k=0}^{n} p\{X=k\} p\{Y=n-k\} \\
= & \sum_{k=0}^{n} e^{-\lambda_{1}} \frac{\lambda_{1}}{k!} e^{-\lambda_{2}} \frac{\lambda_{2}}{(n-k)!}
\end{aligned}
$$

$$
=e^{-\lambda_{1}-\lambda_{2}} \cdot \frac{1}{n!} \sum_{k=0}^{n}\binom{n}{k} \lambda_{1}^{k} \lambda_{2}^{n-k}
$$

By the binomial The

$$
=e^{-\lambda_{1}-\lambda_{2}}\left(\lambda_{1}+\lambda_{2}\right)^{n} / n!
$$

$\left(\right.$ Recall $\left.\quad(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{k} b^{n-k}.\right)$
Hence $X+Y$ has the Poisson distribution with parameter $\lambda_{1}+\lambda_{2}$.
§6.4 Conditional distribution.

1. Discrete case.

Def. Let X, Y be two discrete r.u.'s. Then

$$
P\{X=x \mid Y=y\}=\frac{P\{X=x, Y=y\}}{P\{Y=y\}},
$$

provided that $P\{Y=y\}>0$.
2. Suppose that X and Y are jointly cts with density $f(x, y)$.

Def. The conditional density function of X given $Y=y$, is given by

$$
f_{X \mid Y}(x \mid y):=\frac{f(x, y)}{f_{Y}(y)}
$$

provided that $f_{Y}(y)>0$.

Def. For $A \subset \mathbb{R}$, the conditional prob. of X tatry values in A given $Y=y$ is given by

$$
P\{X \in A \mid Y=y\}=\int_{A} f_{X \mid Y}(x \mid y) d x
$$

In particular,

$$
\begin{aligned}
F_{X \mid Y}(a \mid y): & =p\{X \leqslant a \mid Y=y\} \\
& =\int_{-\infty}^{a} f_{X \mid Y}(x \mid y) d x
\end{aligned}
$$

Remark: If X and Y are independent, then $f_{X \mid Y}(x \mid y)=f_{X}(x)$.
(since in such case $f(x, y)=f_{X}(x) f_{Y}(y)$
Remark: One may view

$$
\begin{aligned}
P\{X \in A
\end{aligned} \quad \begin{aligned}
& =\lim _{\varepsilon \rightarrow 0} P\{X \in A \mid Y-\varepsilon<Y<y+\varepsilon\} \\
& \\
& =\lim _{\varepsilon \rightarrow 0} \frac{P\{X \in A, y-\varepsilon<Y<y+\varepsilon\}}{P\{y-\varepsilon<Y<y+\varepsilon\}}
\end{aligned}
$$

Example 2. Suppose the joint density of X and Y is given by

$$
f(x, y)=\left\{\begin{array}{cl}
e^{-x / y} e^{-y} / y & \text { if } x>0, y>0 \\
0 & \text { othenwis }
\end{array}\right.
$$

Find $P\{X>1 \mid Y=y\}$.
Solution: $f_{Y}(y)=\int_{-\infty}^{\infty} f(x, y) d x$

$$
\begin{aligned}
& =\int_{0}^{\infty} e^{-x / y} e^{-y} / y d x(\text { if } y>0) \\
& =-\left.e^{-x / y} e^{-y}\right|_{x=0} ^{\infty} \\
& =e^{-y} \quad \text { if } y>0 .
\end{aligned}
$$

Hence for $y>0$,

$$
f_{X \mid Y}(x \mid y)=\frac{f(x, y)}{f_{Y(y)}}=e^{-x / y} / y
$$

if $x>0$.

Therefore

$$
\begin{aligned}
p\{X>1 \mid Y=y\} & =\int_{1}^{\infty} e^{-x / y} / y d x \\
& =-\left.e^{-x / y}\right|_{x=1} ^{\infty} \\
& =e^{-1 / y} \quad \text { if } y>0 .
\end{aligned}
$$

