Math $3280 \mathrm{~A} \quad 23-11-06$

Review

- Joint distribution of two r.v.'s
- Independence of two r.u.'s.

Remark: The above concepts can be generalized to finitely many r.U.'s.

Let $X_{1}, X_{2}, \cdots, X_{n}$ be r.v.'s.

- The joint CDE of X_{1}, \cdots, X_{n} is given by

$$
\begin{gathered}
F\left(a_{1}, a_{2}, \cdots, a_{n}\right)=P\left\{X_{1} \leqslant a_{1}, X_{2} \leqslant a_{2}, \cdots, X_{n} \leqslant a_{n}\right\} . \\
a_{1}, \cdots, a_{n} \in \mathbb{R} .
\end{gathered}
$$

- We say that X_{1}, \cdots, X_{n} are jointly continuous if, $\exists f: \mathbb{R}^{n} \rightarrow[0, \infty)$ such that for any "measurable" set $C \subset \mathbb{R}^{n}$,

$$
P\left\{\left(x_{1}, \cdots, x_{n}\right) \in C\right\}=\int_{C} f\left(x_{1}, \cdots, x_{n}\right) d x_{1} \ldots d x_{n}
$$

- We say that X_{1}, \cdots, X_{n} are independent if
(*)

$$
\begin{aligned}
& P\left\{x_{1} \in A_{1}, x_{2} \in A_{2}, \cdots, x_{n} \in A_{n}\right\} \\
& =P\left\{x_{1} \in A_{1}\right\} \cdots P\left\{x_{n} \in A_{n}\right\},
\end{aligned}
$$

for all $A_{1}, \cdots, A_{n} \subset \mathbb{R}$.

Theoretically, one can prove that (*) is equivalent to

$$
(* *) F\left(a_{1}, a_{2}, \cdots, a_{n}\right)=F_{x_{1}}\left(a_{1}\right) \cdots F_{x_{n}}\left(a_{n}\right), \forall a_{1}, \cdots, a_{n} \in \mathbb{R} .
$$

§6.3 Sums of independent r.v.'s.
Question: Let X, Y be independent r.v.'s.
How to calculate the distribution of $X+Y$?

1. The case that both X and Y are continuous.

Let X, Y have densities $f_{X}(x), f_{Y}(y)$ resp.
Since X and Y are assumed to be independent,
X, Y have a joint density

$$
f(x, y)=f_{X}(x) f_{Y}(y)
$$

Now let $a \in \mathbb{R}$, then

$$
\begin{aligned}
F_{X+Y}(a) & =P\{X+Y \leqslant a\} \\
& =\iint_{\substack{(x, y) \in \mathbb{R}^{2}: \\
x+y \leqslant a}} f(x, y) d x d y \\
& =\iint_{(x, y) \in \mathbb{R}^{2}: x+y \leqslant a} f_{X}(x) f_{Y}(y) d x d y \\
& =\int_{-\infty}^{\infty}\left(\int_{-\infty}^{a-y} f_{X}^{(x)} f_{Y}(y) d x\right) d y \\
& =\int_{-\infty}^{\infty} f_{Y}(y) \cdot\left(\int_{-\infty}^{a-y} f_{X}(x) d x\right) d y
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{-\infty}^{\infty} f_{Y}(y) F_{X}(a-y) d y \\
& =: F_{X} * f_{Y}(a)
\end{aligned}
$$

Convolution
(For $g, h: \mathbb{R} \rightarrow \mathbb{R}$, we let

$$
\begin{aligned}
& \left.g * h(a)=\int_{-\infty}^{\infty} g(a-y) h(y) d y\right) \\
f_{X+Y}(a) & =\frac{d}{d_{a}} F_{X+Y}(a) \\
& =\frac{d}{d a} \int_{-\infty}^{\infty} F_{X}(a-y) f_{Y}(y) d y \\
& =\int_{-\infty}^{\infty}\left(\frac{d}{d a} F_{X}(a-y)\right) f_{Y}(y) d y \\
& =\int_{-\infty}^{\infty} f_{X}(a-y) f_{Y}(y) d y \\
& =f_{X} * f_{Y}(a)
\end{aligned}
$$

Thm A. If X, Y are independent, and have densities $f_{X}(x), f_{Y}(y)$, then

$$
\left\{\begin{array}{l}
F_{X+Y}(a)=F_{X} * f_{Y}(a) \\
f_{X+Y}(a)=f_{X} * f_{Y}(a)
\end{array}\right.
$$

Example 1. Let X, Y be independent, both enif. dist. on $[0,1]$. Calculate the density of $X+Y$.

Solution: Let $a \in \mathbb{R}$. Then

$$
\begin{aligned}
f_{X+Y}(a) & =f_{X} * f_{Y}(a) \\
& =\int_{-\infty}^{\infty} f_{X}(a-y) f_{Y}(y) d y \\
& =\int_{0}^{1} f_{X}(a-y) d y \quad\left(\text { since } f_{Y}(y)=\left\{\begin{array}{ll}
1 & \text { if } y \in[0,1] \\
0 \text { otherwise }
\end{array}\right)\right. \\
& \stackrel{\text { lett. }}{=}=\int_{a-1}^{a} f_{X}(z) d z
\end{aligned}
$$

If $0<a \leqslant 1$,

$$
\int_{a-1}^{a} f_{x}(z) d z=\int_{0}^{a} 1 d z=a
$$

If $k a \leq 2$,

$$
\int_{a-1}^{a} f_{x}(z) d z=\int_{a-1}^{1} 1 d z=2-a
$$

If $a>2$ or $a<0$,

$$
\int_{a-1}^{a} f_{x}(z) d z=0
$$

Hence

$$
f_{X+Y}(a)=\left\{\begin{array}{cc}
a & \text { if } 0<a \leqslant 1 \\
2-a & \text { if } 1<a \leqslant 2 \\
0 & \text { otherwise. }
\end{array}\right.
$$

Example 2. Let X, Y be independent normal r.U's with parameters $(0,1)$ and $\left(0, \sigma^{2}\right)$.
Find out the distribution of $X+Y$.
Solution: Recall that

$$
\begin{aligned}
& f_{X}(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}, x \in \mathbb{R} \\
& f_{Y}(y)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{y^{2}}{2 \sigma^{2}}}, \quad y \in \mathbb{R} .
\end{aligned}
$$

Hence for $a \in \mathbb{R}$,

$$
\begin{aligned}
f_{X} f_{Y}(a) & =\int_{-\infty}^{\infty} f_{X}(a-y) f_{Y}(y) d y \\
& =\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{(a-y)^{2}}{2}} \cdot \frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{y^{2}}{2 \sigma^{2}}} d y \\
& =\frac{1}{2 \pi \sigma} \int_{-\infty}^{\infty} e^{-\frac{(a-y)^{2}}{2}-\frac{y^{2}}{2 \sigma^{2}}} d y
\end{aligned}
$$

Notice that

$$
\frac{(a-y)^{2}}{2}+\frac{y^{2}}{2 \sigma^{2}}=\frac{\left(\sqrt{\sigma^{2}+1} y-\frac{a \sigma^{2}}{\sqrt{\sigma^{2}+1}}\right)^{2}}{2 \sigma^{2}}+\frac{a^{2}}{2\left(\sigma^{2}+1\right)}
$$

(verify it)

$$
\begin{aligned}
& \text { Hence } \\
& \begin{aligned}
& f_{X+Y}(a)= \frac{1}{2 \pi \sigma} e^{-\frac{a^{2}}{2\left(\sigma^{2}+1\right)}} \int_{-\infty}^{\infty} e^{-\frac{\left(\sqrt{\sigma^{2}+1} y-\frac{a \sigma^{2}}{\sqrt{\sigma^{2}+1}}\right)^{2}}{2 \sigma^{2}}} d y \\
&\left(\text { letting } z=\frac{\sqrt{\sigma^{2}+1} y-\frac{a \sigma^{2}}{\sqrt{\sigma^{2}+1}}}{\sigma}\right) \\
&= \frac{1}{2 \pi \sigma} \cdot \frac{\sigma}{\sqrt{\sigma^{2}+1}} e^{-\frac{a^{2}}{2\left(\sigma^{2}+1\right)}} \int_{-\infty}^{\infty} e^{-\frac{z^{2}}{2}} d z \\
&\left(\quad \text { using the fact } \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-z^{2} / 2} d z=1\right) \\
&= \frac{1}{\sqrt{2 \pi} \sqrt{\sigma^{2}+1}} e^{-\frac{a^{2}}{2\left(\sigma^{2}+1\right)}}
\end{aligned}
\end{aligned}
$$

Hence $X+Y$ is a normal r.U. with parameters

$$
\left(0, \sigma^{2}+1\right) .
$$

Remark: In general, if X, Y are independent, normal $r . v_{1}$'s with parameters $\left(\mu_{1}, \sigma_{1}^{2}\right)$, and $\left(\mu_{2}, \sigma_{2}^{2}\right)$, then $X+Y$ has a normal distribution with parameters $\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$.

