Math 3280A 23-10-05 Review Bernoulli r.υ. with parameter p
Binomial r.υ with parameters (n, p).
Poisson r.υ. with parameter λ.

§ 4.9 Expectation of sums of cliscrete r.u.'s.
Let X₁, X₂, ..., X_n be discrete r.u.'s on the
same sample space S.
Prop 1.
$$E[X_1 + \dots + X_n] = \sum_{k=1}^{n} E[X_k]$$
.
We will prove the above result under an additional
assumption that S is finite or countably infinite.
(The general caso is referred to Theoretical Exer 4.36
in the text book).

Lem 2. Assume that S is finite or countably infinite.
Set
$$p(s) = P(f \ s)$$
 for $s \in S$.
Then for any r.u. X on S, we have
 $E[X] = \sum_{s \in S} X(s) p(s)$.

Pf. Suppose the distinct values of X are x_i , $i \ge 1$. Let $S_i = \{s \in S : X(s) = x_i \}$. Then S_{1}, S_{2}, \cdots , are a partition of S. By definition, $E[X] = \sum_{i} x_{i} P\{X = x_{i}\}$ $= \sum_{i} x_{i} P(S_{i})$ $= \sum_{i} x_{i} \sum_{s \in S_{i}} p(s)$ $= \sum_{i} \sum_{s \in S_{i}} x_{i} P(s)$ $= \sum_{i} \sum_{s \in S_{i}} \chi_{(s)} p(s)$

 $= \sum_{s \in S} \chi(s) p(s)$ $(because S = \bigcup_{i} S_{i})$ with the Union being disjoint Pf of Prop 1. By Lem 2, $E[X_1 + \dots + X_n] = \sum_{s \in S} (X_1(s) + \dots + X_n(s)) \uparrow (s)$ $= \left(\sum_{s \in S} \chi_{s}(s) p(s)\right) + \cdots + \left(\sum_{s \in S} \chi_{s}(s) p(s)\right)$ $= E[X_1] + \dots + E[X_n]$

§ 4.9. Cumulative distribution function.
Def. Let X be a discrete r.v. Define

$$F_X(b) = P\{X \le b\}$$
, $b \in \mathbb{R}$.
We call F_X the cumulative distribution function
 $(CPF) \circ S X$. We also write $F(b) = F_X(b)$.
Prop 3. (1) F is non-decreasing, that is
 $F(a) \le F(b)$ if $a < b$.
(2) $\lim_{b \to +\infty} F(b) = 1$.
 $b \to +\infty$
(3) $\lim_{b \to +\infty} F(b) = 0$.
 $b \to -\infty$
(4) F is right continuous, i.e.
 $\lim_{b \to +\infty} F(b_n) = F(b)$.
 $b_n \lor b$
 $(i.e. b_n tends to b from the RHS of b)$

The prop. is based on the Continuity property of probability
Readl that if
$$E_n \neq E$$
, then $\lim_{n \to \infty} P(E_n) = P(E)$
(i.e. $E_{n+1} \supseteq E_n$, $E = \bigcup_{n=1}^{\infty} E_n$)
if $E_n \lor E$ ($E_{n+1} \subseteq E_n$, $E = \bigcap_{n=1}^{\infty} E_n$)
then $P(E_n) \rightarrow P(E)$ as $n \rightarrow \infty$.
Pf of Prop 3.
(1) Since if $a < b$, it follows that
 $\{X \le a\} \subset \{X \le b\}$.
So $F(a) \le F(b)$.
(2) If $b_n \neq \infty$,
then $\{X \le b_n\} \neq \{X < \infty\} = S$
So $F(b_n) \rightarrow 1$ (by the continuity property
of property of property of probability)

(3) If
$$bn \sqrt{-\infty}$$
, then

$$\begin{cases} X \leq bn \} \quad \sqrt{X = -\infty} = \emptyset \\ So \quad F(bn) \rightarrow 0. \end{cases}$$
(4) If $bn \sqrt{b}$, then

$$\begin{cases} X \leq bn \end{cases} \quad \sqrt{X \leq b} \\ So \quad \lim_{n \to \infty} F(b_n) = F(b). \\ Thus F is right continuous . \end{cases}$$
Remark . In general, F is not left continuous

Prop 4
$$P\{X=b\} = F(b) - F(b-)$$

Pf. Let $bn \land b$ with $bn < b$.
Then $\{X \le bn\} \land \{X < b\}$.
So $P\{X \le bn\} \rightarrow P\{X < b\}$.
Thus $P\{X < b\} = \lim_{n \to \infty} F(bn) = F(b-)$.
It follows that
 $P\{X = b\} = P\{X \le b\} - P\{X < b\}$
 $= F(b) - F(b-)$.

Chap 5. Continuous Y.U.'s.
§ 5.1 Introduction.
Def. X is called a Cont. r.v. (or absolute
cont. r.u.) if there is a non-negative
function defined on
$$(-\infty, \infty)$$
 such that
 $P\{X \in B\} = \int_{B} f(x) dx$
for all "measurable" sets $B \subset (-\infty, \infty)$.
Remark: The measurable sets include all intervals,
and the countable unions / intersections of intervals.
for $A = \int_{A}^{b} f(x) dx$

 $P\{a \leq X \leq b\} = \int_{a}^{b} f(x) dx$ = Area of the shaded region. · We call of the prob. density function (pdf) of X. Example 2. Let X be a cts r.u. with pdf $f(x) = \begin{cases} C(4x-2x^{2}) & \text{if } x \in (0,2) \\ 0 & \text{otherwise.} \end{cases}$ (1) Find the value of C (2) Find P{XEI}. • $\int_{-\infty}^{\infty} f(x) dx = 1$. Since $P\{X \in (-\infty, \infty)\} = P\{S\} = I$

Solution.

$$1 = \int_{-\infty}^{\infty} f(x) dx$$

$$= \int_{0}^{2} C(4x-2x^{2}) dx$$

$$= C \cdot (2x^{2} - \frac{1}{3}x^{3}) \Big|_{0}^{2}$$

$$= C \cdot (8 - \frac{1}{3}x8) = \frac{8}{3}C.$$
Hence $C = \frac{3}{8}.$

$$P\{X \le 1\} = \int_{-\infty}^{1} f(x) dx$$

$$= \int_{0}^{1} \frac{3}{8} (4x-2x^{3}) dx$$

$$= \frac{3}{8} (2x^{2} - \frac{1}{3}x^{3}) \Big|_{0}^{1}$$