Math 3280 A

$$
23-10-05
$$

Review

- Bernoulli riv. with parameter p
- Binomial r.v with parameters (n, p)
- Poisson ru. with parameter λ.
§4.9 Expectation of sums of discrete r.U.'s.
Let $X_{1}, X_{2}, \cdots, X_{n}$ be discrete r.v.'s on the same sample space S.
Prop 1. $E\left[X_{1}+\cdots+X_{n}\right]=\sum_{k=1}^{n} E\left[X_{k}\right]$.

We will prove the above result under an additional assumption that S is finite or countably infinite. (The general case is referred to Theoretical Exer 4.36 in the text book)

Lem 2. Assume that S is finite or Countably infinite.
Set $p(s)=P(\{s\}) \quad$ for $s \in S$.
Then for any r.U. X on S, we have

$$
E[X]=\sum_{s \in S} X(s) p(s) .
$$

Pf. Suppose the distinct values of X are $x_{i}, i \geqslant 1$.
Let $S_{i}=\left\{s \in S: \quad X(s)=x_{i}\right\}$.
Then S_{1}, S_{2}, \cdots, are a partition of S.
By definition,

$$
\begin{aligned}
E[X] & =\sum_{i} x_{i} P\left\{X=x_{i}\right\} \\
& =\sum_{i} x_{i} P\left(S_{i}\right) \\
& =\sum_{i} x_{i} \sum_{s \in S_{i}} P(s) \\
& =\sum_{i} \sum_{s \in S_{i}} x_{i} P(s) \\
& =\sum_{i} \sum_{s \in S_{i}} X(s) P(s)
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{s \in S} X(s) p(s) \\
& \left(\text { because } \quad S=\bigcup_{i} S_{i}\right.
\end{aligned}
$$

with the Union being disjoint)

Pf of Prop 1.

By Lem 2,

$$
\begin{aligned}
E\left[X_{1}+\cdots+X_{n}\right] & =\sum_{s \in S}\left(X_{1}(s)+\cdots+X_{n}(s)\right) p(s) \\
& =\left(\sum_{s \in S} X_{l}(s) p(s)\right)+\cdots+\left(\sum_{s \in S} X_{n}^{(s)} p(s)\right) \\
& =E\left[X_{1}\right]+\cdots+E\left[X_{n}\right]
\end{aligned}
$$

§ 4.9. Cumulative distribution function.

Def. Let X be a discrete r.v. Define

$$
F_{x}(b)=P\{X \leqslant b\}, \quad b \in \mathbb{R}
$$

We call F_{x} the cumulative distribution function $(C D F)$ of X. We also write $F(b)=F_{x}(b)$.

Prop 3. (1) F is non-decreasing, that is

$$
F(a) \leqslant F(b) \text { if } a<b \text {. }
$$

(2) $\lim _{b \rightarrow+\infty} F(b)=1$.
(3) $\lim _{b \rightarrow-\infty} F(b)=0$.
(4) F is right continuous, i.e.

$$
\lim _{b_{n} \downarrow b} F\left(b_{n}\right)=F(b)
$$

(i.e. b_{n} tends to b from the RHS of b)

The prop. is based on the continuity property of probability
Recall that if $E_{n} \not \perp E$, then $\lim P\left(E_{n}\right)=P(E)$ (i.e $E_{n+1} \supset E_{n}, E=\bigcup_{n=1}^{\infty} E_{n}$)
if $E_{n} \searrow E\left(E_{n+1} \subset E_{n}, E=\bigcap_{n=1}^{\infty} E_{n}\right)$
then $P\left(E_{n}\right) \rightarrow P(E)$ as $n \rightarrow \infty$.
pf of Prop 3.
(1) Since if $a<b$, it follows that

$$
\{x \leqslant a\} \subset\{x \leqslant b\} .
$$

So $F(a) \leqslant F(b)$.
(2) If $b_{n} \uparrow \infty$,
then $\left\{x \leqslant b_{n}\right\} \nless\{x<\infty\}=S$
So $F\left(b_{n}\right) \rightarrow 1 \quad$ (by the continuity property of probability)
(3) If $b_{n} \downarrow-\infty$, then

$$
\left\{X \leqslant b_{n}\right\} \searrow\{X=-\infty\}=\varnothing
$$

So $F\left(b_{n}\right) \rightarrow 0$.
(4) If $b_{n} \downarrow b$, then

$$
\left\{x \leqslant b_{n}\right\} \forall\{x \leqslant b\} .
$$

So $\quad \lim _{n \rightarrow \infty} F\left(b_{n}\right)=F(b)$.
Thus F is right continuous

Remark: - In general, F is not left continuous.

Prop 4. $p\{x=b\}=F(b)-F(b-)$
Pf. Let $b_{n} \uparrow b$ with $b_{n}<b$.
Then $\left\{X \leqslant b_{n}\right\} /\{X<b\}$.
So $P\left\{X \leq b_{n}\right\} \rightarrow P\{X<b\}$
Thus $P\{x<b\}=\lim _{n \rightarrow \infty} F\left(b_{n}\right)=F(b-)$.
It follows that

$$
\begin{aligned}
P\{X=b\} & =P\{X \leq b\}-P\{x<b\} \\
& =F(b)-F(b-) .
\end{aligned}
$$

Chap 5. Continuous V.U.'s.
§5.1 Introduction.

Def. X is called a cont.r.v. (or absolute cont. r.U.) if there is a non-negative function defined on $(-\infty, \infty)$ such that

$$
P\{x \in B\}=\int_{B} f(x) d x
$$

for all "measurable" sets $B \subset(-\infty, \infty)$.

Remark: The measurable sets include all intervals, and the countable unions/intersections of intervals.

$$
\begin{aligned}
& P\{a \leqslant X \leqslant b\}=\int_{a}^{b} f(x) d x \\
&=\text { Area of the shaded } \\
& \text { region. }
\end{aligned}
$$

- We call f the prob. density function ($p d_{f}$) of X.

Example 2. Let X be a cts r.u. with $p d f$

$$
f(x)= \begin{cases}C\left(4 x-2 x^{2}\right) & \text { if } x \in(0,2) \\ 0 & \text { otherwise }\end{cases}
$$

(1) Find the value of C
(2) Find $P\{X \leqslant 1\}$.

- $\int_{-\infty}^{\infty} f(x) d x=1$.

Sine $p\{X \in(-\infty, \infty)\}=p\{S\}=1$

Solution:

$$
\begin{aligned}
1 & =\int_{-\infty}^{\infty} f(x) d x \\
& =\int_{0}^{2} C\left(4 x-2 x^{2}\right) d x \\
& =\left.C \cdot\left(2 x^{2}-\frac{2}{3} x^{3}\right)\right|_{0} ^{2} \\
& =C \cdot\left(8-\frac{2}{3} \times 8\right)=\frac{8}{3} C .
\end{aligned}
$$

Hence $C=\frac{3}{8}$.

$$
\begin{aligned}
P\{x \leqslant 1\} & =\int_{-\infty}^{1} f(x) d x \\
& =\int_{0}^{1} \frac{3}{8}\left(4 x-2 x^{2}\right) d x \\
& =\left.\frac{3}{8}\left(2 x^{2}-\frac{2}{3} x^{3}\right)\right|_{0} ^{1} \\
& =\frac{1}{2}
\end{aligned}
$$

