Introductory Probability 23-09-07
Chapter 2 Axioms of probability

1. Introduction.

- Probability is a math area dealing with random behaviors.
- It has a history of more than 300 years in the study.
- It came from gambling in the early stage, and gaming of chance.

2. Random experiments, outcomes, sample space, events.

Random experiments / out comes.

Example: (1) Toss a coin to get a head or a tail.
(2) Roll a dice to see the number of the top face
(3) Measure the height of a randomly chosen student in the campus.
possible
Def. (sample space). The set of all outcomes of an experiment is called the sample space of the experiment.

Usually, We use S to denote the sample space.

Example (1) Toss a coin once.

$$
S=\{H, T\} .
$$

Toss a coin twice.

$$
S=\{H H, H T, T H, T T\}
$$

(2) Roll a dice once

$$
S=\{1,2,3,4,5,6\} .
$$

Roll a dice 3 times

$$
S=\{(i, j, k): \quad i, j, k \in\{1,2,3,4,5,6\}\}
$$

(3) height of a randomly chosen student (in meters)

$$
S=\{0<x<\infty\}=(0, \infty)
$$

Def (event) Let S be the sample space of an experiment.
Every subset E of S is called an event.
If an outcome of the experiment is contained in the event E, then we say $y^{\text {that }} E$ has occured.

- Basic operations on events.

Union: $E \cup F$
Intersection: $E \cap F$
Complement $\quad E^{C}=S \backslash E$
$\varnothing \quad$ Null event.
We say two events E, F are mutually exclusive if $E \cap F=\varnothing$.

Venn diagram:

En F

$$
E^{c}
$$

- Laws.
(i) $E \cup F=F \cup E, E \cap F=F \cap E$ commutative laws

$$
\left.\begin{array}{l}
E \cap(F \cup G)=(E \cap F) \cup(E \cap G) \quad \text { distributive law } \\
E \cup(F \cup G)=(E \cup F) \cup G \\
E \cap(F \cap G)=(E \cap F) \cap G .
\end{array}\right\} \quad \text { associative laws }
$$

(ii) De Morgan's laws

$$
\begin{aligned}
& \left(\bigcup_{n=1}^{\infty} E_{n}\right)^{c}=\bigcap_{n=1}^{\infty} E_{n}^{c} \\
& \left(\bigcap_{n=1}^{\infty} E_{n}\right)^{c}=\bigcup_{n=1}^{\infty} E_{n}^{c}
\end{aligned}
$$

Pf. Let us prove the first equality in (ii)

$$
\begin{aligned}
& x \in\left(\bigcup_{n=1}^{\infty} E_{n}\right)^{c} \\
\Leftrightarrow & x \in S, \quad x \notin \bigcup_{n=1}^{\infty} E_{n}
\end{aligned}
$$

$\Leftrightarrow \quad x \in S, \quad x \notin E_{n}$ for $n=1,2, \cdots$
$\Leftrightarrow \quad x \in E_{n}^{c}$ for $n=1,2, \ldots$

$$
\Leftrightarrow \quad x \in \bigcap_{n=1}^{\infty} E_{n}^{c}
$$

Hence $\left(\bigcup_{n=1}^{\infty} E_{n}\right)^{c}=\bigcap_{n=1}^{\infty} E_{n}^{c}$.
§2.3. Axioms of probability.

Q: How can we define the prob. of an event?
An intuitive approach:
repeat the random experiment n times.
Let $n(E)$ be the times that an event E occurs
Let $\quad P(E)=\lim _{n \rightarrow \infty} \frac{n(E)}{n}$.

Drawbacks: (1) why does the limit exist?
(2) Even if the limit exist, why is it independent of the experiments?

The axiomatic approach to prob. (by Kolmogrov) Def. (Prob. of an event)

Let S be the sample space of a random experiment A probability P on S is a function that assigns a value to each event E such that the following 3 axioms hold:

Axiom 1: $0 \leqslant P(E) \leqslant 1, \forall$ event E
Axiom 2: $\quad P(S)=1$.
Axiom 3: If E_{1}, E_{2}, \cdots, are a sequence
of events which are mutually exclusive, then

$$
P\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\sum_{n=1}^{\infty} P\left(E_{n}\right)
$$

(Countable additivity of prob.)
§2.4. Some properties of probability.
Prop 1. $P(\varnothing)=0$.
Pf. Let $E_{1}=S$, and $E_{n}=\varnothing$ for $n=2,3, \cdots$. Then E_{1}, E_{2}, \cdots, are mutually exclusive.
By Axiom 3.

$$
\begin{aligned}
P\left(\bigcup_{n=1}^{\infty} E_{n}\right) & =\sum_{n=1}^{\infty} P\left(E_{n}\right) \\
& =P\left(E_{1}\right)+P\left(E_{2}\right)+\cdots \\
& =P(S)+P(\phi)+P(\phi)+\cdots
\end{aligned}
$$

LHS $\leqslant 1$, RHS $\leqslant 1$ only 0 curs when $P(\varnothing)=0$.

Prop 2. (finite additivity)
Let $E_{1}, E_{2}, \cdots, E_{n}$ be mutually exclusive events.
Then

$$
P\left(\bigcup_{k=1}^{n} E_{k}\right)=\sum_{k=1}^{n} P\left(E_{k}\right)
$$

Pf. Define $E_{j}=\phi$ for $j=n+1, n+2, \cdots$
By Axiom 3.

$$
\begin{aligned}
& P\left(\bigcup_{k=1}^{\infty} E_{k}\right)=\sum_{k=1}^{\infty} P\left(E_{k}\right) \\
&=\sum_{k=1}^{n} P\left(E_{k}\right)+\sum_{k=n+1}^{\infty} P\left(E_{k}\right) \\
&=\sum_{k=1}^{n} P\left(E_{k}\right) \quad\left(\sin \theta P\left(E_{n+1}\right)\right. \\
&=P\left(E_{n+2}\right)=\cdots=0 \\
&\quad \text { by } \operatorname{Prop} 1)
\end{aligned}
$$

Now the proposition follows from

$$
\bigcup_{k=1}^{n} E_{k}=\bigcup_{k=1}^{\infty} E_{k}
$$

Prop 3. $\quad P\left(E^{C}\right)=1-P(E)$.
Pf. Notice that

$$
S=E^{c} \cup E \cup \phi \cup \phi \cdots .
$$

By Axiom 3 and Prop 1, Axiom ${ }^{2}$

$$
1=P(S)=P\left(E^{C}\right)+P(E)
$$

Prop 4 Let E, F be two events. Then

$$
P(E \cup F)=P(E)+P(F)-P(E \cap F)
$$

Pf. $\quad E \cup F=E \cup(F \backslash E)$
since $E \cap(F \backslash E)=\varnothing$, so by Axiom 3,

$$
\begin{equation*}
P(E \cup F)=P(E)+P(F \backslash E) \tag{1}
\end{equation*}
$$

Now we consider $P(F \backslash E)$.
Notice that

$$
F=(F(E) \cup(E \cap F)
$$

$$
\text { blue } \leftrightarrow F \backslash E \text {. }
$$

Using Axiom 3 again,

$$
P(F)=P(F \backslash E)+P(E \cap F)
$$

hence

$$
\begin{equation*}
P(F(E)=P(F)-P(E \cap F) \tag{2}
\end{equation*}
$$

Plugging (2) into (1) yields the desired identity.

Prop. 5. Suppose F CE. Then

$$
P(F) \leqslant P(E)
$$

Pf. Since $F \subset E$,

$$
\begin{aligned}
E= & F \cup(E \backslash F) \\
& (\text { disjoint }) .
\end{aligned}
$$

By Prop 2,

$$
P(E)=P(F)+P(E \backslash F) .
$$

Since $P(E \mid F) \geqslant 0$ by Axiom 1, it follows that

$$
P(E) \geqslant P(F)
$$

Prop 6. Let E_{1}, E_{2}, \cdots, be a sequence of events.
Then

$$
P\left(\bigcup_{n=1}^{\infty} E_{n}\right) \leqslant \sum_{n=1}^{\infty} P\left(E_{n}\right) .
$$

(Countable sub-additivity of prob.)
Proof. First we write $\bigcup_{n=1}^{\infty} E_{n}$ as the union of some disjoint events. To do so, write

$$
\begin{aligned}
& F_{1}=E_{1} \\
& F_{2}=E_{2} \backslash E_{1} \\
& F_{3}=E_{3} \backslash\left(E_{1} \cup E_{2}\right), \\
& \cdots \\
& F_{n}=E_{n} \backslash\left(\bigcup_{i=1}^{n-1} E_{i}\right),
\end{aligned}
$$

Then the following properties hold:
(1) $F_{n} \subset E_{n}, \quad n=1, \cdots$,
(2) F_{1}, F_{2}, \cdots are mutually exclusive.
(3) $\bigcup_{i=1}^{n} F_{i}=\bigcup_{i=1}^{n} E_{i}$
(4) $\bigcup_{i=1}^{\infty} F_{i}=\bigcup_{i=1}^{\infty} E_{i}$
(1) and (2) are easy to see. Below we only prove (4). The proof of (3) is similar.

To show (4), recall that $F_{i} \subset E_{i}$ so

$$
\bigcup_{i=1}^{\infty} F_{i} \subset \bigcup_{i=1}^{\infty} E_{i}
$$

To prove $\bigcup_{i=1}^{\infty} F_{i} \supset \bigcup_{i=1}^{\infty} E_{i}$, let $x \in \bigcup_{i=1}^{\infty} E_{i}$. Then $x \in E_{i}$ for some i

Let i_{0} be the smallest integer

$$
x \in E_{i_{0}}
$$

Then $x \in E_{i} \backslash \bigcup_{j=1}^{i_{0}-1} E_{j}=F_{i_{0}}$.
It follows that

$$
\bigcup_{i=1}^{\infty} E_{i} \subset \bigcup_{i=1}^{\infty} F_{i},
$$

which proves (*)
Now using Axiom 3 to $P\left(\bigcup_{n=1}^{\infty} F_{n}\right)$
we have

$$
\begin{aligned}
P\left(\bigcup_{n=1}^{\infty} F_{n}\right) & =\sum_{n=1}^{\infty} P\left(F_{n}\right) \\
& \leqslant \sum_{n=1}^{\infty} P\left(E_{n}\right),
\end{aligned}
$$

and we are done $\sin c$

$$
P\left(\bigcup_{n=1}^{\infty} F_{n}\right)=P\left(\bigcup_{n=1}^{\infty} E_{n}\right) \text {. In }
$$

