Recall

Common continuous distributions

Uniform random variable. with parameter (a, b) where $a<b$. Denote $X \sim U(a, b)$.
(1) X is equally likely to be near each value in the interval (a, b).
(2) PDF: $f(x)=\left\{\begin{array}{ll}\frac{1}{b-a} & x \in[a, b] \\ 0 & \text { otherwise. }\end{array}\right.$ and CDF: $F(t)= \begin{cases}0 & t \in(-\infty, a) \\ \frac{t-a}{b-a} & t \in[a, b] \\ 1 & t \in(b,+\infty) .\end{cases}$
$E[X]=\frac{a+b}{2}$ and $\operatorname{Var}(X)=\frac{(a-b)^{2}}{12}$.
In particular, if $Y \sim U(0,1)$, then for Y,
PDF: $f(y)=\left\{\begin{array}{ll}1 & y \in[0,1] \\ 0 & \text { otherwise. }\end{array}\right.$ and CDF: $F(t)= \begin{cases}0 & t \in(-\infty, 0) \\ t & t \in[0,1] \\ 1 & t \in(1,+\infty) .\end{cases}$
Normal random variable. with parameter $\left(\mu, \sigma^{2}\right)$ where $\sigma>0$. Denote $X \sim N\left(\mu, \sigma^{2}\right)$.
(2) PDF: $f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}, \forall x \in \mathbb{R}$ and CDF: $F(t)=\int_{-\infty}^{t} \frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} d x, \forall t \in \mathbb{R}$. $E[X]=\mu$ and $\operatorname{Var}(X)=\sigma^{2}$.
Let $a, b \in \mathbb{R}$ with $a \neq 0$. Then $Y=a X+b$ is also a normal random variable. In particular, $Y=\frac{X-\mu}{\sigma} \sim N(0,1)$ is called the standard normal random variable.
The CDF of Y is conventionally denoted by Φ. Recall $\Phi(t):=\int_{-\infty}^{t} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x$ for $t \in \mathbb{R}$.
(1) Binomial random variable $\operatorname{Bin}(n, p)$ when n large \approx normal r.v.. Later we will discuss about this fact when the central limit theorem is introduced.

Theorem (DeMoivre-Laplace). Let $S_{n} \sim \operatorname{Bin}(n, p)$ and $Y \sim N(0,1)$. Then for $a<b \in \mathbb{R}$,

$$
P\left\{a \leq \frac{S_{n}-n p}{\sqrt{n p(1-p)}} \leq b\right\} \rightarrow P\{a \leq Y \leq b\}=\Phi(b)-\Phi(a) \quad \text { as } n \rightarrow \infty
$$

Exponential random variable. with parameter $\lambda>0$. Denote $X \sim \operatorname{Exp}(\lambda)$.
(2) PDF: $f(x)=\left\{\begin{array}{ll}\lambda e^{-\lambda x} & x \geq 0 \\ 0 & x<0 .\end{array}\right.$ and CDF: $F(t)= \begin{cases}1-e^{-\lambda t} & t \geq 0 \\ 0 & t<0 .\end{cases}$ $E[X]=\frac{1}{\lambda}, E\left[X^{n}\right]=\frac{n}{\lambda} E\left[X^{n-1}\right]$ for $n \geq 2$ and $\operatorname{Var}(X)=\frac{1}{\lambda^{2}}$.
(1) In practice, X arises as the distribution of the amount of time until some specific event occurs (see e.g., Example 3). By $P\{X>t\}=1-F(t)=e^{\lambda t}$ for $t>0$, there is a key property (memoryless) of X that

$$
P\{X>s+t \mid X>s\}=P\{X>t\} \quad \forall s, t>0 .
$$

Examples about the above random variables

Example 1 (Standard uniform r.v. is universal). Consider the random variable $U \sim U(0,1)$. Suppose F is a strictly increasing continuous CDF. Then the following statements hold:
(i) Define $X:=F^{-1}(U)$. Then the CDF of X is F.
(ii) If the CDF of X is F , then $F(X) \sim U(0,1)$.

Proof. (i) Let F_{X} denote the CDF of X. Then for $t \in \mathbb{R}$, since $F(t) \in[0,1]$ for all $t \in \mathbb{R}$,

$$
F_{X}(t)=P\{X \leq t\}=P\left\{F^{-1}(U) \leq t\right\}=P\{U \leq F(t)\}=F(t) .
$$

Hence the CDF of X is F.
(ii) Let $F_{F(X)}$ denote the CDF of $F(X)$. Then for $t \in \mathbb{R}$,

$$
F_{F(X)}(t)=P\{F(X) \leq t\}= \begin{cases}0 & t \leq 0 \\ P\left\{X \leq F^{-1}(t)\right\}=F\left(F^{-1}(t)\right)=t & 0<t<1 \\ 1 & t \geq 1\end{cases}
$$

Hence $F(X) \sim U(0,1)$.

Remark. It follows from (i) of Example 1 that we can generate samples that satisfy the desired distribution F by assigning F^{-1} to the samples with distribution $U(0,1)$.

Example 2. Let $X \sim N(0,1)$. Find a PDF of $Y=X^{2}$.
Solution. Let F denote the CDF of Y. Then for $t \in \mathbb{R}$,

$$
F(t)=P\{Y \leq t\}=P\left\{X^{2} \leq t\right\}
$$

If $t<0$, then $F(t)=0$ and $f(t)=0$ by differentiation.
If $t>0$, then $F(t)=P\{-\sqrt{t} \leq X \leq \sqrt{t}\}=P\{-\sqrt{t}<X \leq \sqrt{t}\}=\Phi(\sqrt{t})-\Phi(-\sqrt{t})$. By chain rule,

$$
f(t)=\frac{d F(t)}{d t}=\frac{1}{\sqrt{2 \pi}} e^{-t / 2} \cdot \frac{1}{2 \sqrt{t}}-\frac{1}{\sqrt{2 \pi}} e^{-t / 2} \cdot \frac{-1}{2 \sqrt{t}}=\frac{1}{\sqrt{2 \pi t}} e^{-t / 2} .
$$

Define

$$
f(t):= \begin{cases}\frac{1}{\sqrt{2 \pi t}} e^{-t / 2} & t>0 \\ 0 & t \leq 0\end{cases}
$$

Hence f is a PDF of Y.
Example 3. For $t>0$, let N_{t} be the number of emails that we receive during time $[0, t]$. Suppose $N_{t} \sim \operatorname{Poisson}(\lambda t)$ with $\lambda>0$. Let T be the time when the first email come. Find the CDF of T.

Solution. Let F denote the CDF of T. If $t<0$, then $F(t)=0$. If $t>0$, then

$$
F(t)=P\{T \leq t\}=1-P\{T>t\} .
$$

Since the event $\{T>t\}$ that the first email comes after time t is equivallent to the event that there is no emails during the time $[0, t]$, we have

$$
F(t)=1-P\left\{N_{t}=0\right\}=1-\frac{e^{-\lambda t}(\lambda t)^{0}}{0!}=1-e^{-\lambda t}
$$

Hence by differentiation, we define

$$
f(t):= \begin{cases}\lambda e^{-\lambda t} & t>0 \\ 0 & t \leq 0\end{cases}
$$

Thus T has $\operatorname{PDF} f$ and $T \sim \operatorname{Exp}(\lambda)$.

A flash card about Φ to feel the concentration of the probability around the expectation:
The 68-95-99.7 rule for $X \sim N\left(\mu, \sigma^{2}\right)$:

- $P\{|X-\mu| \leq \sigma\}=2 \Phi(1)-1 \approx 0.68$.
- $P\{|X-\mu| \leq 2 \sigma\}=2 \Phi(2)-1 \approx 0.95$.
- $P\{|X-\mu| \leq 3 \sigma\}=2 \Phi(3)-1 \approx 0.997$.

