Recall

Cumulative distribution function

The cumulative distribution function (CDF) of a random variable X is defined by

$$
F(t):=P\{X \leq t\}, \quad \forall t \in \mathbb{R}
$$

which has the following properties:

- Non-decreasing. - Right-continuous. - $\lim _{t \rightarrow-\infty} F(t)=0$ and $\lim _{t \rightarrow+\infty} F(t)=1$.

For $x \in \mathbb{R}, P\{X<x\}=\lim _{t \rightarrow x-} F(t)$.

Continuous random variable

A random variable X is (absolutely) continuous if there exists a non-negative function, called probability density function (PDF), such that

$$
P\{X \in B\}=\int_{B} f(x) d x
$$

where B is a 'measurable' set in \mathbb{R}. Fortunately, countable unions and intersections of intervals are 'measurable'.

Below are some facts about a continuous random variable X :
Unit integral of $\boldsymbol{a} P D F . \int_{-\infty}^{+\infty} f(x) d x=1$.
Zero probability at any point. $\forall x \in \mathbb{R}, P\{X=x\}=0$.
Cumulative distribution function. $\forall t \in \mathbb{R}, F(t):=\int_{-\infty}^{t} f(x) d x$.
For $t \in \mathbb{R}$, it follows from $F(t)=P\{X \leq t\}=P\{X<t\}=\lim _{x \rightarrow t-} F(x)$ that $F(t)$ is leftcontinuous, hence continuous, at t. In conclusion, the CDF of a continuous r.v. is continuous.

Expectation. $E[X]:=\int_{-\infty}^{+\infty} x f(x) d x$.
Continuous layer-cake. If X is continuous and non-negative, then $E[X]=\int_{0}^{+\infty} P\{X>t\} d t$.
Expectation of a function of a continuous r.v.. Let $g: \mathbb{R} \rightarrow \mathbb{R}$. Then $E[g(X)]=\int_{-\infty}^{+\infty} g(x) f(x) d x$.
Variance. $\operatorname{Var}(X):=E\left[(X-E[X])^{2}\right]=E\left[X^{2}\right]-(E[X])^{2}$.
Affine transform. For $a, b \in \mathbb{R},\left\{\begin{array}{l}E[a X+b]=a E[X]+b ; \\ \operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X) .\end{array}\right.$
Relation between PDF f and CDF F. If f is continuous at $x \in \mathbb{R}$, then $F^{\prime}(x)=\frac{d F(x)}{d x}=f(x)$.

Probability computation from CDF

Example 1. Suppose a random variable X has CDF

$$
F(t)= \begin{cases}0 & t \in(-\infty, 0) \\ t / 4 & t \in[0,1) \\ 1 / 2+(t-1) / 4 & t \in[1,2) \\ 11 / 12 & t \in[2,3) \\ 1 & t \in[3,+\infty)\end{cases}
$$

Find $P\{X=i\}, i=1,2,3$ and $P\{1 \leq X<3\}$.
Solution. Below is the graph of $F(t)$.

Then

$$
\begin{aligned}
& P\{X=1\}=P\{X \leq 1\}-P\{X<1\}=F(1)-\lim _{t \rightarrow 1-} F(t)=\frac{1}{2}-\frac{1}{4}=\frac{1}{4} \\
& P\{X=2\}=P\{X \leq 2\}-P\{X<2\}=F(2)-\lim _{t \rightarrow 2-} F(t)=\frac{11}{12}-\frac{3}{4}=\frac{1}{6}, \\
& P\{X=3\}=P\{X \leq 3\}-P\{X<3\}=F(3)-\lim _{t \rightarrow 3-} F(t)=1-\frac{11}{12}=\frac{1}{12} .
\end{aligned}
$$

And

$$
P\{1 \leq X<3\}=P\{X<3\}-P\{X<1\}=\lim _{t \rightarrow 3-} F(t)-\lim _{t \rightarrow 1-} F(t)=\frac{11}{12}-\frac{1}{4}=\frac{2}{3}
$$

Remark. Since the CDF of a discrete random variable should be like a step function, it follows that X in Example 1 is not discrete. On the other hand, X is not a continuous random variable either because the CDF of a continuous random variable should be continuous.

Some computations about continuous random variables

Example 2. Let X be a random variable with PDF

$$
f(x)=\left\{\begin{array}{lc}
c\left(1-x^{2}\right) & -1<x<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Find the value of c and the CDF of X.
Solution. Since f is a PDF, we have

$$
1=\int_{-\infty}^{\infty} f(x) d x=\int_{-1}^{1} c\left(1-x^{2}\right) d x=\left.c\left(x-\frac{x^{3}}{3}\right)\right|_{-1} ^{1}=\frac{4}{3} c,
$$

which implies $c=\frac{3}{4}$. Recall that for $t \in \mathbb{R}$, the $\operatorname{CDF} F(t):=\int_{-\infty}^{t} f(x) d x$.

$$
\begin{aligned}
& \text { If } t \leq-1 \text {, then } F(t)=\int_{-\infty}^{t} f(x) d x=\int_{-\infty}^{t} 0 d x=0 \\
& \text { If } 1<t \leq 1 \text {, then } F(t)=\int_{-\infty}^{t} f(x) d x=\int_{-1}^{t} \frac{3}{4}\left(1-x^{2}\right) d x=\frac{3}{4}\left(t-\frac{t^{3}}{3}+\frac{2}{3}\right)=-\frac{t^{3}}{4}+\frac{3 t}{4}+\frac{1}{2} \text {, } \\
& \text { If } t>1 \text {, then } F(t)=P(X \leq t)=1-P(X>t)=1-\int_{t}^{\infty} 0 d x=1 .
\end{aligned}
$$

Thus

$$
F(t)= \begin{cases}0 & t \in(-\infty,-1] \\ -\frac{t^{3}}{4}+\frac{3 t}{4}+\frac{1}{2} & t \in(-1,1] \\ 1 & t \in(1, \infty)\end{cases}
$$

Example 3. Let X be a random variable with $\operatorname{PDF} f_{X}$. Find a PDF of random variable $Y=$ $a X+b$ where $0 \neq a \in \mathbb{R}, b \in \mathbb{R}$.

Solution. Let F_{X} and F_{Y} denote the CDFs of X and Y respectively. For $t \in \mathbb{R}$,

$$
F_{Y}(t)=P\{Y \leq t\}=P\{a X+b \leq t\} .
$$

If $a>0$, then $F_{Y}(t)=P\left\{X \leq \frac{t-b}{a}\right\}=F_{X}\left(\frac{t-b}{a}\right)$. When F_{X} is differentiable at $\frac{t-b}{a}$, by chain rule,

$$
f_{Y}(t)=\frac{d F_{Y}(t)}{d t}=\frac{1}{a} f_{X}\left(\frac{t-b}{a}\right) .
$$

When F_{X} is NOT differentiable at $\frac{t-b}{a}$, we define $f_{Y}(t)=\frac{1}{a} f_{X}\left(\frac{t-b}{a}\right)$. Together, when $a>0$, a possible PDF of Y is

$$
f_{Y}(t)=\frac{1}{a} f_{X}\left(\frac{t-b}{a}\right) \quad, \forall t \in \mathbb{R}
$$

If $a<0$, then $F_{Y}(t)=P\left\{X \geq \frac{t-b}{a}\right\}=1-P\left\{X<\frac{t-b}{a}\right\}=1-P\left\{X \leq \frac{t-b}{a}\right\}=1-F_{X}\left(\frac{t-b}{a}\right)$. We omit the discussion about differentiability. By differentiation, when $a<0$, a PDF of Y is

$$
f_{Y}(t)=\frac{d F_{Y}(t)}{d t}=-\frac{1}{a} f_{X}\left(\frac{t-b}{a}\right) \quad, \forall t \in \mathbb{R}
$$

Remark. In Example 3, we have carefully dealt with the differentiability of a CDF in the case of $a>0$, which is the rigorous way to think about it. However, in practice we omit the discussion because we know that a CDF is differentiable at most points. Then as in Example 3, we adjust the values on the tiny part of non-differentiable points to simplify the final results.

Let f be a PDF of a coninuous random variable X. After changing values of f on a tiny part of \mathbb{R}, the resulted f is still a PDF of X.

Remark. Let X be a continuous random variable and $g: \mathbb{R} \rightarrow \mathbb{R}$ be any function. The following example shows that we are not even sure whether $g(X)$ has a PDF. Actually, in Example 3 we have omitted the step to prove that $Y=a X+b$ is indeed continuous with a PDF. In practice, when the question asks for a PDF, we can take it for granted that the target PDF exists like Example 3 and Example 4.

Example 4. Suppose the CDF of X is

$$
F(t)= \begin{cases}1-e^{-t^{2}} & t>0 \\ 0 & t \leq 0\end{cases}
$$

Find $P\{X>2\}$ and a PDF of X.
Solution. First

$$
P\{X>2\}=1-P\{X \leq 2\}=1-F(2)=e^{-4} .
$$

Then

$$
\begin{aligned}
& \text { If } x>0 \text {, then } \frac{d F(x)}{d x}=2 x e^{-x^{2}} \\
& \text { If } x<0 \text {, then } \frac{d F(x)}{d x}=0
\end{aligned}
$$

Define

$$
f(x)= \begin{cases}2 x e^{-x^{2}} & x>0 \\ 0 & x \leq 0\end{cases}
$$

Hence $f(x)$ is a PDF of X.

