Recall

Common discrete distributions

Bernoulli r.v.. with parameter $p \in[0,1]$. Denote $X \sim \operatorname{Bern}(p)$.
(1) X is the outcome of a trial that succeeds with probability p and fails with probability $1-p$.
(2) The PMF of X is $p(1)=P\{X=1\}=p$ and $p(0)=P\{X=0\}=1-p$.

Note $E[X]=p$ and $\operatorname{Var}(X)=p(1-p)$.
Binomial r.v.. with parameter (n, p). Denote $X \sim \operatorname{Bin}(n, p)$.
(1) X is the number of successes that occur in the n independent Bernoulli trials with parameter p.
(2) The PMF of X is $p(k)=P\{X=k\}=\sum_{k=0}^{n}\binom{n}{k} p^{k}(1-p)^{n-k}$ for $k=0, \ldots, n$.
(3) Let X_{1}, \ldots, X_{n} be independent Bernoulli r.v.s with parameter p. Then $X=\sum_{k=1}^{n} X_{k}$.

Note $E[X]=n p$ and $\operatorname{Var}(X)=n p(1-p)$.
Poisson r.v. with parameter $\lambda>0$. Denote $X \sim \operatorname{Poisson}(\lambda)$.
(1) The PMF of X is $p(k)=P\{X=k\}=\frac{e^{-\lambda} \lambda^{k}}{k!}$ for $k=0,1,2, \ldots$

Note $E[X]=\operatorname{Var}(X)=\lambda$.

Geometric random variable \& computing examples

Example 1 (Geometric r.v. with parameter p). Denote $X \sim \operatorname{Geom}(p)$.
(1) X is the number of independent Bernoulli trials with parameter $p \in(0,1)$ such that first success occur.
(2) By independence, the PMF is $p(k)=(1-p)^{k-1} p$ for $k=1,2,3, \ldots$

Then we show $E[X]=\frac{1}{p}$ and $\operatorname{Var}(X)=\frac{1-p}{p^{2}}$.
By definition, $E[X]=\sum_{k=1}^{\infty} k(1-p)^{k-1} p$. Note that for $x \in(-1,1)$, (by a result about the uniform convergence of power series) we have

$$
\sum_{k=1}^{\infty} k x^{k-1}=\sum_{k=0}^{\infty}\left(x^{k}\right)^{\prime}=\left(\sum_{k=0}^{\infty} x^{k}\right)^{\prime}=\left(\frac{1}{1-x}\right)^{\prime}=\frac{1}{(1-x)^{2}}
$$

Then setting $x=1-p$ leads to $E[X]=p \sum_{k=1}^{\infty} k(1-p)^{k-1}=p \frac{1}{[1-(1-p)]^{2}}=\frac{1}{p}$.

To obtain $\operatorname{Var}(X)$, it suffices to compute $E\left[X^{2}\right]$

$$
\begin{aligned}
E\left[X^{2}\right] & =\sum_{k=1}^{\infty} k^{2}(1-p)^{k-1} p \\
& =\sum_{k=1}^{\infty}(k-1+1)^{2}(1-p)^{k-1} p \\
& =\sum_{k=1}^{\infty}(k-1)^{2}(1-p)^{k-1} p+\sum_{k=1}^{\infty} 2(k-1)(1-p)^{k-1} p+\sum_{k=1}^{\infty}(1-p)^{k-1} p \\
\text { (let } n=k-1) & =(1-p) \sum_{n=1}^{\infty} n^{2}(1-p)^{n-1} p+2(1-p) \sum_{k=1}^{\infty} n(1-p)^{n-1} p+1 \\
& =(1-p) E\left[X^{2}\right]+2(1-p) E[X]+1
\end{aligned}
$$

Then substitute $E[X]=\frac{1}{p}$ and solve the equation to get $E\left[X^{2}\right]=\frac{2-p}{p^{2}}$.
Hence $\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}=\frac{1-p}{p^{2}}$.
Remark. Observe that we have use two different ways to compute $E[X]$ and $\operatorname{Var}(X)$ in Example 1 both of which can be recursively extended to deal with series like $\sum_{k=1}^{\infty} k^{p} x^{k}$ with $p \in \mathbb{N}$.

Example 2. Let $X \sim \operatorname{Bin}(n, p)$. Prove

$$
E\left[\frac{1}{1+X}\right]=\frac{1-(1-p)^{n+1}}{(n+1) p}
$$

Proof. Recall the PMF of $\operatorname{Bin}(n, p)$ and by the formula of $E[g(X)]$,

$$
\begin{aligned}
E\left[\frac{1}{1+X}\right] & =\sum_{k=0}^{n} \frac{1}{k+1}\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =\frac{1}{(n+1) p} \sum_{k=0}^{n} \frac{1}{k+1} \frac{(n+1)!}{k![(n+1)-(k+1)]!} \cdot p^{k+1}(1-p)^{[(n+1)-(k+1)]} \\
& =\frac{1}{(n+1) p} \sum_{k=0}^{n}\binom{n+1}{k+1} p^{k+1}(1-p)^{[(n+1)-(k+1)]} \\
(\text { let } j=k+1) & =\frac{1}{(n+1) p}\left[\sum_{j=0}^{n}\binom{n+1}{j} p^{j}(1-p)^{[(n+1)-j]}-(1-p)^{n+1}\right]
\end{aligned}
$$

$($ by Binomial Thm $)=\frac{1}{(n+1) p}\left[1-(1-p)^{n+1}\right]$.

Example 3. Let X be a r.v. with non-negative integral values. Prove

$$
\sum_{k=0}^{\infty} k P(X \geq k)=\frac{1}{2}\left(E\left[X^{2}\right]+E[X]\right)
$$

Proof.

$$
\begin{aligned}
\sum_{k=0}^{\infty} k P(X \geq k) & =\sum_{k=0}^{\infty} \sum_{i=k}^{\infty} k P(X=i) \\
& =\sum_{i=0}^{\infty} \sum_{k=0}^{i} k P(X=i) \\
& =\sum_{i=0}^{\infty} \frac{i(i+1)}{2} P(X=i) \\
& =\frac{1}{2} E\left[X^{2}\right]+\frac{1}{2} E[X],
\end{aligned}
$$

where in the second equality we have changed the order of summation.

