Recall

Independence of events

- E and F are independent if $P(E F)=P(E) P(F) \Longleftrightarrow P(E \mid F)=P(E)$ if $P(F)>0$.
- $\left\{E_{1}, \ldots, E_{n}\right\}$ are independent if for every $\left\{i_{1}, \ldots, i_{r}\right\} \subset\{1, \ldots, n\}$,

$$
P\left(E_{i_{1}} \cdots E_{i_{r}}\right)=P\left(E_{i_{1}}\right) \cdots P\left(E_{i_{r}}\right)
$$

- An infinite family of events are independent if every finite subset of events from that family are independent.

Example 1 (Pairwise independence \nRightarrow independence). Roll a die twice. Consider the events

$$
\begin{aligned}
& A=\{\text { sum of the two numbers is } 7\}, \\
& B=\{\text { the first number is } 3\} \\
& C=\{\text { the second number is } 4\}
\end{aligned}
$$

Then

$$
P(A)=P(B)=P(C)=\frac{1}{6} \quad \text { and } \quad P(A \cap B)=P(A \cap C)=P(B \cap C)=\frac{1}{36} .
$$

However,

$$
P(A \cap B \cap C)=\frac{1}{36} \quad \text { while } \quad P(A) P(B) P(C)=\frac{1}{216} .
$$

Hence the events $\{A, B, C\}$ are pairwise independent but NOT independent.
Remark. It follows from Example 1 that we should check all the 'product' equations in the definition to assure the independence of a finite family of events.

Discrete random variables

A random variable X is a function from the sample space S to the real numbers \mathbb{R}. The randomness comes from the probability $P(\cdot)$ on the sample space. If the range of X is a countable set in \mathbb{R}, then X is called discrete random variable. The probability mass function (PMF) of a discrete random variable is defined by

$$
p(x):=P(X=x) .
$$

Expectation / expected value / mean.

$$
E[X]:=\sum_{x: p(x)>0} x p(x) .
$$

Let $g: \mathbb{R} \rightarrow \mathbb{R}$. Then it is proved that

$$
E[g(X)]=\sum_{x: p(x)>0} g(x) p(x) .
$$

In particular, for any $a, b \in \mathbb{R}$,

$$
E[a X+b]=a E[X]+b
$$

Variance.

$$
\operatorname{Var}(X):=E\left[(X-E[X])^{2}\right]=E\left[X^{2}\right]-(E[X])^{2},
$$

And for $a, b \in \mathbb{R}$,

$$
\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)
$$

Computing expectations

Example 2. Two balls are randomly chosen from a box containing 8 white balls and 4 black balls. Suppose we win two dollars for each black ball and lose one dollar for each white ball selected. Let random variable X be our winnings. What is X ? What are the probabilities associated to each value?

Proof. First, note that the sample space is

$$
S=\{(\text { Black }, \text { Black }),(\text { Black }, \text { White }),(\text { White }, \text { Black }),(\text { White }, \text { White })\} .
$$

We can detect that $X(B, B)=4, X(B, W)=X(W, B)=2-1=1, X(W, W)=-2$. It means the random variable can only take values from $\{4,1,-2\}$. Therefore,

$$
P(X=k)= \begin{cases}\frac{\binom{4}{2}}{\binom{12}{2}} & \text { if } k=4 \\ \frac{(4}{1}\binom{8}{1} \\ \binom{12}{2} & \text { if } k=1 \\ \frac{\binom{8}{2}}{\binom{12}{2}} & \text { if } k=-2\end{cases}
$$

Example 3. Randomly choose 3 numbers from $\{1, \ldots, 10\}$. Let X be the smallest number among the 3 chosen numbers. Find $E[X]$.

Solution. First determine the probability mass function

$$
p(k)=P(X=k)= \begin{cases}\frac{\binom{10-k}{2}}{\binom{10}{3}} & k=1, \ldots, 8 \\ 0 & k=9,10\end{cases}
$$

where the first case is obtained by choosing the other 2 numbers that are greater than k, and the second case results from the observation that 9,10 can never be the smallest numbers among the 3 chosen numbers. Then

$$
E[X]=\sum_{k=1}^{10} k p(k)=\sum_{k=1}^{8} k \frac{\binom{10-k}{2}}{\binom{10}{3}}=\frac{11}{4} .
$$

Example 4. In a game show, there are 3 doors:

$$
\begin{array}{|c}
\hline+\$ 30, \\
\hline-\$ 10, \\
\hline
\end{array}
$$

To start the game, you have to pay $\$ 5$ to randomly open a door from these 3 doors which look the same to you. You will get $\$ 30$ if opening $+\$ 30$ and lose $\$ 10$ if opening $-\$ 10$.

Assume you are 'reasonable': if you win $\$ 30$, then you quit the game; if you lose $\$ 10$, then you flip a coin to decide whether you should continue, i.e., if the coin shows tail then you quit the game; if the coin shows head then you pay another $\$ 5$ to randomly open a door from the remaining 2 doors. Assume you are only allowed to play at most 2 rounds.

Let X be the winnings when you leave. Find $E[X]$ and $\operatorname{Var}(X)$.
Solution. First determine the sample space of the door results each of which is represented by a vector

$$
S=\{(+30),(-10),(-10,+30),(-10,-10)\}
$$

Let G be the random variable labeling the above outcomes with $1,2,3,4$ from left to right, e.g. the event $\{G=2\}$ is the outcome (-10). Then the r.v. X is a function of the r.v. G, i.e. $X=f(G)$ for some function $f: \mathbb{R} \rightarrow \mathbb{R}$ which assigning the winnings to outcomes. Hence

$$
\begin{aligned}
E[X]= & E[f(G)] \\
= & \sum_{k=1}^{4} P(G=k) f(k) \\
= & \frac{1}{3} \times(-5+30)+\frac{2}{3} \times \frac{1}{2} \times(-5-10)+ \\
& +\frac{2}{3} \times \frac{1}{2} \times \frac{1}{2} \times(-5-10-5+30)+\frac{2}{3} \times \frac{1}{2} \times \frac{1}{2} \times(-5-10-5-10) \\
= & 0
\end{aligned}
$$

And since $E[X]=0$,

$$
\operatorname{Var}(X)=E\left[X^{2}\right]-(E[X])^{2}=E\left[(f(G))^{2}\right]=\sum_{k=1}^{4} P(G=k)(f(k))^{2}=450
$$

